如圖,已知△ABC是銳角三角形,BE、CF分別為∠ABC與∠ACB的角平分線,BE、CF相交于點(diǎn)O,
(1)若∠A=50°,求∠BOC的度數(shù).
(2)∠BOC與∠A有怎樣的關(guān)系,并加以證明.
分析:(1)根據(jù)三角形的內(nèi)角和定理求出∠ABC+∠ACB,再根據(jù)角平分線的定義求出∠OBC+∠OCB,然后在△OBC中,利用三角形的內(nèi)角和定理列式進(jìn)行計(jì)算即可得解;
(2)根據(jù)(1)的思路證明即可.
解答:解:(1)∵∠A=50°,
∴∠ABC+∠ACB=180°-∠A=180°-50°=130°,
∵BE、CF分別為∠ABC與∠ACB的角平分線,
∴∠OBC=
1
2
∠ABC,∠OCB=
1
2
∠ACB,
∴∠OBC+∠OCB=
1
2
(∠ABC+∠ACB)=
1
2
×130°=65°,
在△OBC中,∠BOC=180°-(∠OBC+∠OCB)=180°-65°=115°;

(2)∠BOC=90°+
1
2
∠A.理由如下:
證明:在△ABC中,∠ABC+∠ACB=180°-∠A,
∵BE、CF分別為∠ABC與∠ACB的角平分線,
∴∠OBC=
1
2
∠ABC,∠OCB=
1
2
∠ACB,
∴∠OBC+∠OCB=
1
2
(∠ABC+∠ACB)=
1
2
(180°-∠A)=90°-
1
2
∠A,
在△OBC中,∠BOC=180°-(∠OBC+∠OCB)=180°-(90°-
1
2
∠A)=90°+
1
2
∠A,
即∠BOC=90°+
1
2
∠A.
點(diǎn)評(píng):本題考查了三角形的內(nèi)角和定理,角平分線的定義,整體思想的利用是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC是邊長(zhǎng)為4的正三角形,AB在x軸上,點(diǎn)C在第一象限,AC與y軸交于點(diǎn)D,點(diǎn)A精英家教網(wǎng)的坐標(biāo)為(-1,0).
(1)寫出B,C,D三點(diǎn)的坐標(biāo);
(2)若拋物線y=ax2+bx+c經(jīng)過B,C,D三點(diǎn),求此拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC是等邊三角形,AB交⊙O于點(diǎn)D,DE⊥AC于點(diǎn)E.
(1)求證:DE為⊙O的切線.
(2)已知DE=3,求:弧BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC是等邊三角形,E是AC延長(zhǎng)線上一點(diǎn),選擇一點(diǎn)D,使得△CDE是等邊三角形,如果M是線段AD的中點(diǎn),N是線段BE的中點(diǎn),
求證:△CMN是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•襄城區(qū)模擬)如圖,已知△ABC是等邊三角形,D、E分別在邊BC、AC上,且CD=CE,連接DE并延長(zhǎng)至點(diǎn)F,使EF=AE,連接AF、BE和CF.
(1)求證:△BCE≌△FDC;
(2)判斷四邊形ABDF是怎樣的四邊形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•奉賢區(qū)二模)如圖,已知△ABC是等邊三角形,點(diǎn)D是BC延長(zhǎng)線上的一個(gè)動(dòng)點(diǎn),以AD為邊作等邊△ADE,過點(diǎn)E作BC的平行線,分別交AB,AC的延長(zhǎng)線于點(diǎn)F,G,聯(lián)結(jié)BE.
(1)求證:△AEB≌△ADC;
(2)如果BC=CD,判斷四邊形BCGE的形狀,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案