【題目】如圖,AB⊥BC,DC⊥BC,E是BC上一點(diǎn),EM⊥EN,∠EMA和∠END的平分線交于點(diǎn)F,則∠F的度數(shù)為( 。
A. 120° B. 135° C. 150° D. 不能確定
【答案】B
【解析】
過F作FQ∥AB,過E作EH∥AB,求出AB∥CD∥EH∥FQ,根據(jù)平行線的性質(zhì)求出∠MFN=∠1+∠8,∠MEN=∠3+∠6=90°,即可求出答案.
∵AB⊥BC,DC⊥BC,∴∠B=∠C=90°,∴∠B+∠C=180°,∴AB∥CD.
∵EM⊥EN,∴∠MEN=90°.
∵MF平分∠AME,NF平分∠DNE,∴∠1=∠2,∠7=∠8.
過F作FQ∥AB,過E作EH∥AB.
∵AB∥CD,∴AB∥CD∥EH,AB∥CD∥FQ,∴∠3=∠4,∠5=∠6,∠1=∠MFQ,∠8=∠NFQ,∴∠MEN=∠4+∠5=∠3+∠6=90°,∠MFN=∠1+∠8.
∵∠1+∠2=180°﹣∠3,∠7+∠8=180°﹣∠6,∴2∠1+2∠8=180°+180°﹣(∠3+∠6)=360°﹣90°=270°,∴∠1+∠8=135°,∴∠MFN=135°.
故選B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BE、CE分別是∠ABC和∠ACB的平分線,過點(diǎn)E作DF∥BC交AB于D,交AC于F,若AB =5,AC =4,則△ADF周長為( 。.
A.7B.8C.9D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P為等邊△ABC外一點(diǎn),AH垂直平分PC于點(diǎn)H,∠BAP的平分線交PC于點(diǎn)D.
(1)求證:DP=DB;
(2)求證:DA+DB=DC;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AD是高,BE是中線,CF是角平分線,CF交AD于G,交BE于H.下列結(jié)論:①S△ABE=S△BCE;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CH.其中所有正確結(jié)論的序號是
A.①②③④B.①②③C.②④D.①③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,在以AB的中點(diǎn)O為坐標(biāo)原點(diǎn),AB所在直線為x軸建立的平面直角坐標(biāo)系中,將△ABC繞點(diǎn)B順時針旋轉(zhuǎn),使點(diǎn)A旋轉(zhuǎn)至y軸的正半軸上的A處,若AO=OB=2,則陰影部分面積為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB為直徑,∠BAC的平分線交⊙O于點(diǎn)D,過點(diǎn)D作DE⊥AC分別交AC、AB的延長線于點(diǎn)E、F.
(1)求證:EF是⊙O的切線;
(2)若AC=4,CE=2,求的長度.(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD交AB于點(diǎn)P,AP=2,BP=6,∠APC=30°,則CD的長為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,這個圖案是3世紀(jì)我國漢代數(shù)學(xué)家趙爽在注解《周髀算經(jīng)》時給出的,人們稱它為“趙爽弦圖”.已知AE=3,BE=2,若向正方形ABCD內(nèi)隨意投擲飛鏢(每次均落在正方形ABCD內(nèi),且落在正方形ABCD內(nèi)任何一點(diǎn)的機(jī)會均等),則恰好落在正方形EFGH內(nèi)的概率為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com