【題目】某市地鐵1號線全長約60km,市政府通過招標(biāo),甲、乙兩家地鐵工程公司承擔(dān)了施工任務(wù),根據(jù)招標(biāo)合同可知,甲公司每月計劃施工效率是乙公司的1.2倍,則乙公司單獨施工比甲公司單獨施工多用10個月,且市政府需要支付給甲公司的施工費用為6億元/km,乙公司的施工費用為5億元/km

1)甲、乙兩家地鐵工程公司每月計劃施工各為多少km?

2)由于設(shè)備和施工現(xiàn)場只能供一家地鐵工程公司單獨施工的原因,現(xiàn)計劃甲、乙兩家公司共用55個月恰好完成施工任務(wù)(每家公司施工時間不足一個月按照一個整月計算),且甲公司施工時間不得少于乙公司的兩倍,應(yīng)如何安排才能使市政府支付給兩家地鐵工程公司的總費用最少?

【答案】1)甲公司每月計劃施工1.2km,乙公司每月施工1km;(2)甲公司施工37個月,乙公司施工18個月,總費用最少.

【解析】

1)設(shè)乙公司每月計劃施工x km,則甲公司每月施工1.2x km,根據(jù)乙公司單獨施工比甲公司單獨施工多用10個月,列方程求解;

2)設(shè)甲公司施工了m個月,則乙公司施工(55-m)個月,共支付的總費用為w億元,根據(jù)題意列出wm的函數(shù)關(guān)系式并根據(jù)甲公司施工時間不得少于乙公司的兩倍確定m的取值范圍,然后利用一次函數(shù)的性質(zhì)求最值.

解:設(shè)乙公司每月計劃施工x km,則甲公司每月施工1.2x km

根據(jù)題意,得

解得,x=1

經(jīng)檢驗,x=1是原方程的根,

1.2x=1.2×1=1.2

因此,甲公司每月計劃施工1.2km,乙公司每月施工1km

2)設(shè)甲公司施工了m個月,則乙公司施工(55-m)個月,共支付的總費用為w億元,則

w=1.2×6·m+1×5·55-m=7.2m+275-5m=2.2m+275

k=2.20w隨著m的增大而增大,

∵甲公司施工時間不得少于乙公司的兩倍,

,

,

∴當(dāng)m=37時,w有最大值,

55-37=18,

因此,甲公司施工37個月,乙公司施工18個月,總費用最少.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在Rt△ABC中,∠C=90°,AC=6,BC=8,動點P從點A開始沿邊AC向點C以1個單位長度的速度運動,動點Q從點C開始沿邊CB向點B以每秒2個單位長度的速度運動,過點P作PD∥BC,交AB于點D,連接PQ分別從點A、C同時出發(fā),當(dāng)其中一點到達端點時,另一點也隨之停止運動,設(shè)運動時間為t秒(t≥0).

(1)直接用含t的代數(shù)式分別表示:QB=   ,PD=   

(2)是否存在t的值,使四邊形PDBQ為菱形?若存在,求出t的值;若不存在,說明理由.并探究如何改變Q的速度(勻速運動),使四邊形PDBQ在某一時刻為菱形,求點Q的速度;

(3)如圖2,在整個運動過程中,求出線段PQ中點M所經(jīng)過的路徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,ABC=120°,將菱形折疊,使點A恰好落在對角線BD上的點G處(不與B、D重合),折痕為EF,若DG=2,BG=6,則BE的長為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,,將繞點逆時針旋轉(zhuǎn)后得到,則圖中陰影部分的面積是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸于兩點,交軸于點直線經(jīng)過點

1)求拋物線的解析式;

2)點是直線下方的拋物線上一動點,過點軸于點交直線于點設(shè)點的橫坐標(biāo)為的值;

3是第一象限對稱軸右側(cè)拋物線上的一點,連接拋物線的對稱軸上是否存在點.使得相似,且為直角,若存在,請直接寫出點的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若拋物線yx23x+cy軸的交點為(0,2),則下列說法正確的是( 。

A. 拋物線開口向下

B. 拋物線與x軸的交點為(﹣10),(30

C. 當(dāng)x1時,y有最大值為0

D. 拋物線的對稱軸是直線x

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形OABC在直角坐標(biāo)系中的位置如圖所示,A、C兩點的坐標(biāo)分別為A(60)、C(03),直線y=xBC邊相交于D

1)求點D的坐標(biāo):

2)若拋物線y=axbx經(jīng)過DA兩點,試確定此拋物線的表達式:

3Px軸上方(2)題中的拋物線上一點,求△POA面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,ABCD的邊ABx軸上,頂點Dy軸的正半軸上,點C在第一象限,將AOD沿y軸翻折,使點A落在x軸上的點E處,點B恰好為OE的中點,DEBC交于點F.若yk≠0)圖象經(jīng)過點C,且SBEF1,則k的值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是半圓O的直徑,過點O作弦AD的垂線交半圓O于點E,交AC于點C,使BED=C.

(1)判斷直線AC與圓O的位置關(guān)系,并證明你的結(jié)論;

(2)若AC=8,cosBED=,求AD的長.

查看答案和解析>>

同步練習(xí)冊答案