如圖2,在□ABCD中,E是BC的中點,且

∠AEC=∠DCE,則下列結論不正確的是(  )
A.SAFD=2SEFBB.BF=DF
C.四邊形AECD是等腰梯形D.∠AEB=∠ADC
A
分析:本題要綜合分析,但主要依據(jù)都是平行四邊形的性質(zhì).
解答:解:A、∵AD∥BC
∴△AFD∽△EFB
===
故SAFD=4SEFB;
B、由A中的相似比可知,BF=DF,正確.
C、由∠AEC=∠DCE可知正確.
D、利用等腰三角形和平行的性質(zhì)即可證明.
故選A.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

由三角形三邊中位線所圍成的三角形的面積是原三角形面積的             。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(10分)已知:如圖,在梯形ABCD中,AD∥BC,∠DCB = 90°,E是AD的中點,點P是BC邊上的動點(不與點B重合),EP與BD相交于點O.
(1)當P點在BC邊上運動時,求證:△BOP∽△DOE;
(2)設(1)中的相似比為,若AD︰BC = 2︰3. 請?zhí)骄浚寒攌為下列三種情況時,四邊形ABPE是什么四邊形?
①當= 1時,是          ;
②當= 2時,是             ;
③當= 3時,是                .
請證明= 2時的結論.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(2011廣西崇左,24,14分)(本小題滿分14分)如圖,在邊長為8的正方形ABCD
中,點OAD上一動點(4<OA<8),以O為圓心,OA的長為半徑的圓交邊CD于點M,連接OM,過點M作圓O的切線交邊BC于點N.
(1)      求證:△ODM∽△MCN;
(2)      設DM=x,求OA的長(用含x的代數(shù)式表示);
(3)      在點O運動的過程中,設△CMN的周長為p,試用含x的代數(shù)式表示p,你能發(fā)現(xiàn)怎樣的結論?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(9分)如圖,正方形ABCD的邊長為8,E是邊AB上的一點,, EF⊥DE
交BC于點F.
(1)求的長;
(2)求的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在等腰Rt△ABC中,AB=BC點E在BC上,以AE為邊作正方形AEMN,EM交AB于F,連結BM.
(1)求證:BM⊥AB
(2)若CE=2BE,求的值.
 

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

若四邊形ABCD∽四邊形,且AB∶=1∶2   ,已知BC=8,則的長是(    )
A.4B.16C.24D.64

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在中,,,把邊長分別為個正方形依次放入中,請回答下列問題:

(1)按要求填表

1
2
3

 
 
 
(2)第個正方形的邊長       ;
(3)若是正整數(shù),且,試判斷的關系.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,在△ABC中,點D、E、F分別在邊AB、BC、CA上,DEAC,DFBC.如果BE=6cm,EC=10cm,AF-FC=3cm,求FC的長.

查看答案和解析>>

同步練習冊答案