【題目】在平面直角坐標系中,為坐標原點,直線交軸負半軸)軸正半軸于兩點, 的面積為4.5;
如圖1.求的值;
如圖2.在軸負半軸上取點.點在第一象限,連接,過點作交的延長線于點,若,求的值;
如圖3,在的條件下.交軸于點軸交的延長線于點,設與軸交于點,連接,當時,求點的坐標.
【答案】(1);(2);(3)或
【解析】
(1)分別求、坐標,其中的坐標用表示,利用為等量關系即求出的值.
(2)由聯(lián)想到在上截取,則有.由條件易證四邊形是正方形,由即得到,有,,通過角度轉換可得.證,即得到,求得.
(3)要求點坐標,即要求的長,又在中,,即求出的長則確定,即求出.由聯(lián)想到給所在的構造全等三角形:過點作軸于點,在上截取,連接,通過角度轉換可證,即有.設,,則能用表示、,利用勾股定理列方程即求出的值.求得兩個的值要分別代入計算討論合理性.
解:(1)當時,,解得:
,
當時,
,
(2)在上截取,連接
軸,
四邊形是矩形
,
,即
矩形是正方形
在與中
,
在與中
(3)過點作軸于點,在上截取,連接
,
軸,軸
四邊形是矩形
,
在與中,
,
即
在與中,
設,則
,
在中,
解得:,
①當時,,
②當時,,
綜上所述,點坐標為或
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=2,BC=10,E、F分別在邊BC,AD上,BE=DF.將△ABE,△CDF分別沿著AE,CF翻折后得到△AGE,△CHF.若AG、CH分別平分∠EAD、∠FCB,則GH長為( )
A.3B.4C.5D.7
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在中,,,點為邊上的動點(點不與點,重合).以為頂點作,射線交邊于點,過點作交射線于點,連接.
(1)求證:;
(2)當時(如圖2),求的長;
(3)點在邊上運動的過程中,是否存在某個位置,使得?若存在,求出此時的長;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,0為原點,A(4,0),E(0,3),四邊形OABC,四邊形OCDE都為平行四邊形,OC=5,函數(shù)y=(x>0)的圖象經(jīng)過AB的中點F和DE的中點G,則k的值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,△ABC內接于⊙O,直徑AD交BC于點E,延長AD至點F,使DF=2OD,連接FC并延長交過點A的切線于點G,且滿足AG∥BC,連接OC,若cos∠BAC=,BC=8.
(1)求證:CF是⊙O的切線;
(2)求⊙O的半徑OC;
(3)如圖2,⊙O的弦AH經(jīng)過半徑OC的中點F,連結BH交弦CD于點M,連結FM,試求出FM的長和△AOF的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2018年平昌冬奧會在2月9日到25日在韓國平昌郡舉行,為了調查中學生對冬奧會比賽項目的了解程度,某中學在學生中做了一次抽樣調查,調查結果共分為四個等級:A、非常了解B、比較了解C、基本了解D、不了解.根據(jù)調查統(tǒng)計結果,繪制了如圖所示的不完整的三種統(tǒng)計圖表.
對冬奧會了解程度的統(tǒng)計表
對冬奧會的了解程度 | 百分比 |
A非常了解 | 10% |
B比較了解 | 15% |
C基本了解 | 35% |
D不了解 | n% |
(1)n= ;
(2)扇形統(tǒng)計圖中,D部分扇形所對應的圓心角是 ;
(3)請補全條形統(tǒng)計圖;
(4)根據(jù)調查結果,學校準備開展冬奧會的知識競賽,某班要從“非常了解”程度的小明和小剛中選一人參加,現(xiàn)設計了如下游戲來確定誰參賽,具體規(guī)則是:把四個完全相同的乒乓球標上數(shù)字1,2,3,4然后放到一個不透明的袋中,一個人先從袋中摸出一個球,另一人再從剩下的三個球中隨機摸出一個球,若摸出的兩個球上的數(shù)字和為偶數(shù),則小明去,否則小剛去,請用畫樹狀圖或列表的方法說明這個游戲是否公平.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在水果銷售旺季,某水果店購進一優(yōu)質水果,進價為20元/千克,售價不低于20元/千克,且不超過32元/千克,根據(jù)銷售情況,發(fā)現(xiàn)該水果一天的銷售量y(千克)與該天的售價x(元/千克)滿足如下表所示的一次函數(shù)關系.
銷售量y(千克) | … | 34.8 | 32 | 29.6 | 28 | … |
售價x(元/千克) | … | 22.6 | 24 | 25.2 | 26 | … |
(1)某天這種水果的售價為23.5元/千克,求當天該水果的銷售量.
(2)如果某天銷售這種水果獲利150元,那么該天水果的售價為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,為的直徑,點為延長線上的一點,過點作的切線,切點為,過兩點分別作的垂線,垂足分別為,連接.
求證:(1)平分;
(2)若,求的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com