23、如圖,已知△ABC是等腰直角三角形,∠BAC=90°,BE是∠ABC的平分線,DE⊥BC,垂足為D.
(1)請你寫出圖中所有的等腰三角形;
(2)請你判斷AD與BE垂直嗎?并說明理由.
(3)如果BC=10,求AB+AE的長.
分析:(1)根據(jù)等腰三角形的定義判斷,△ABC等腰直角三角形,BE為角平分線;可證△ABE≌△DBE,即AB=BD,AE=DE,所以△ABD和△ADE均為等腰三角形;∠C=45°,ED⊥DC,△EDC也符合題意,綜上所述符合題意的三角形為有△ABC,△ABD,△ADE,△EDC;
(2)BE是∠ABC的平分線,DE⊥BC,根據(jù)角平分線定理可知△ABE關(guān)于BE與△DBE對稱.可得出BE⊥AD.
(3)根據(jù)(2),可知△ABE關(guān)于BE與△DBE對稱,且△DEC為等腰直角三角形,可推出AB+AE=BD+DC=BC=10.
解答:解:(1)△ABC,△ABD,△ADE,△EDC.
(2)AD與BE垂直.
證明:由BE為∠ABC的平分線,
知∠ABE=∠DBE,∠BAE=∠BDE=90°,BE=BE,
∴△ABE沿BE折疊,一定與△DBE重合.
∴A、D是對稱點,
∴AD⊥BE.
(3)∵BE是∠ABC的平分線,DE⊥BC,EA⊥AB,
∴AE=DE,又BE=BE
∴Rt△ABE≌Rt△DBE(HL),
∴AB=AD,
又∵△DCE為等腰直角三角形,
∴DE=DC,
即AB+AE=BD+DC=BC=10.
點評:此題考查了學(xué)生對角平分線定理以及在學(xué)習(xí)過程中對三角形知識的總結(jié)和認(rèn)識.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC是邊長為4的正三角形,AB在x軸上,點C在第一象限,AC與y軸交于點D,點A精英家教網(wǎng)的坐標(biāo)為(-1,0).
(1)寫出B,C,D三點的坐標(biāo);
(2)若拋物線y=ax2+bx+c經(jīng)過B,C,D三點,求此拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC是等邊三角形,AB交⊙O于點D,DE⊥AC于點E.
(1)求證:DE為⊙O的切線.
(2)已知DE=3,求:弧BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC是等邊三角形,E是AC延長線上一點,選擇一點D,使得△CDE是等邊三角形,如果M是線段AD的中點,N是線段BE的中點,
求證:△CMN是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•襄城區(qū)模擬)如圖,已知△ABC是等邊三角形,D、E分別在邊BC、AC上,且CD=CE,連接DE并延長至點F,使EF=AE,連接AF、BE和CF.
(1)求證:△BCE≌△FDC;
(2)判斷四邊形ABDF是怎樣的四邊形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•奉賢區(qū)二模)如圖,已知△ABC是等邊三角形,點D是BC延長線上的一個動點,以AD為邊作等邊△ADE,過點E作BC的平行線,分別交AB,AC的延長線于點F,G,聯(lián)結(jié)BE.
(1)求證:△AEB≌△ADC;
(2)如果BC=CD,判斷四邊形BCGE的形狀,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案