【題目】如圖,AB是⊙O的直徑,AC是⊙O的弦,過點C的切線交AB的延長線于點D,若∠A=∠D,CD=3,則圖中陰影部分的面積為 .
科目:初中數(shù)學 來源: 題型:
【題目】下列各式中:
①由3x=﹣4系數(shù)化為1得x=﹣;
②由5=2﹣x移項得x=5﹣2;
③由 去分母得2(2x﹣1)=1+3(x﹣3);
④由2(2x﹣1)﹣3(x﹣3)=1去括號得4x﹣2﹣3x﹣9=1.
其中正確的個數(shù)有( 。
A. 0個 B. 1個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】模型與應(yīng)用.
(模型)
(1)如圖①,已知AB∥CD,求證∠1+∠MEN+∠2=360°.
(應(yīng)用)
(2)如圖②,已知AB∥CD,則∠1+∠2+∠3+∠4+∠5+∠6的度數(shù)為 .
如圖③,已知AB∥CD,則∠1+∠2+∠3+∠4+∠5+∠6+…+∠n的度數(shù)為 .
(3)如圖④,已知AB∥CD,∠AM1M2的角平分線M1 O與∠CMnMn-1的角平分線MnO交于點O,若∠M1OMn=m°.
在(2)的基礎(chǔ)上,求∠2+∠3+∠4+∠5+∠6+……+∠n-1的度數(shù).(用含m、n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC,AB=AC,以AB為直徑的⊙O分別交AC、BC于點D、E,點F在AC的延長線上,且∠CBF= ∠CAB.
(1)求證:直線BF是⊙O的切線;
(2)若AB=5,sin∠CBF= ,求BC和BF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】矩形OABC在平面直角坐標系中的位置如圖所示,點B的坐標為(3,4),D是OA的中點,點E在AB上,當△CDE的周長最小時,點E的坐標為( 。
A.(3,1)
B.(3, )
C.(3, )
D.(3,2)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)計算
①(1﹣)×(1+)= ,1﹣()2= ; 有(1﹣)×(1+) 1﹣()2 (用“=”“<”“>”填空).
②(1﹣)×(1+)= ,1﹣()2= ; 有(1﹣)×(1+) 1﹣()2 (用“=”“<”“>”填空).
③猜測(1﹣)(1+)與1﹣()2 有關(guān)系:(1﹣)(1+) 1﹣()2.(用“=”“<”“>”填空)
(2)計算:[1﹣()2]×[1﹣()2]×[1﹣()2]×…×[1﹣()2]
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與x軸交于點A,與反比例函數(shù)y= (x>0)的圖象交于點B(2,n),過點B作BC⊥x軸于點C,點P(3n﹣4,1)是該反比例函數(shù)圖象上的一點,且∠PBC=∠ABC,求反比例函數(shù)和一次函數(shù)的表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題情境:如圖1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度數(shù).
小明的思路是:如圖2,過P作PE∥AB,通過平行線性質(zhì),可得∠APC=50°+60°=110°.
問題遷移:
(1)如圖3,AD∥BC,點P在射線OM上運動,當點P在A、B兩點之間運動時,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之間有何數(shù)量關(guān)系?請說明理由;
(2)在(1)的條件下,如果點P在A、M兩點之間和B、O兩點之間上運動時(點P與點A、B、O三點不重合),請你分別直接寫出∠CPD、∠α、∠β之間的數(shù)量關(guān)系.
,圖1) ,圖2)
,圖3) ,備用圖)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com