【題目】已知二次函數(shù)y1=ax2+bx+1(a>0),一次函數(shù)y2=x.
(Ⅰ)若二次函數(shù)y1的圖象與一次函數(shù)y2的圖象只有一個交點,求a與b之間的關(guān)系;
(Ⅱ)在(Ⅰ)的條件下,y1的圖象與y2圖象的交點為P,且點P的橫坐標(biāo)是2,若將y2向上平移t個單位,與y1交于兩點Q,R,△PQR面積為2,求t;
(Ⅲ)二次函數(shù)y1圖象與一次函數(shù)y2圖象有兩個交點(x1,y1)(x2,y2),且滿足x1<2<x2<4,此時設(shè)函數(shù)y1的對稱軸為x=m,求m的范圍.
【答案】(1)b2﹣2b+1=4a;(2)t=1;(3)﹣1<m<2.
【解析】
根據(jù)二次函數(shù)、一次函數(shù)、正比例函數(shù)的性質(zhì),求出交點坐標(biāo)即可.
解:(1)若二次函數(shù)y1的圖象與一次函數(shù)y2的圖象只有一個交點,
即:ax2+bx+1=x,△=(b﹣1)2﹣4a=0,
解得:b2﹣2b+1=4a,…①
答:a與b之間的關(guān)系是b2﹣2b+1=4a;
(2)圖象如上圖所示,若將y2向上平移t個單位后所在直線為PR所在直線為y=x+t ,
將P點坐標(biāo)(2,2)代入二次函數(shù)方程得:4a+2b+1=2…②
聯(lián)立方程①②解得:b=0,a=,
點Q、R的坐標(biāo)由方程③和二次函數(shù)聯(lián)立得:
x2﹣x+1﹣t=0,則:|xQ﹣xP|=4,
S△PQR= |xQ﹣xP|PH=2,解得:t=1,
答:t=1;
(3),即:ax2+(b﹣1)x+1=0,
方程有兩個根x1<2<x2<4,根據(jù)函數(shù)得:
解得:﹣1<﹣<2,
答:m的范圍為﹣1<m<2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,甲、乙兩漁船同時從港口O出發(fā)外出捕魚,乙沿南偏東30°方向以每小時10海里的速度航行,甲沿南偏西75°方向以每小時10海里的速度航行,當(dāng)航行1小時后,甲在A處發(fā)現(xiàn)自己的漁具掉在乙船上,于是迅速改變航向和速度,仍以勻速沿南偏東60°方向追趕乙船,正好在B處追上.則甲船追趕乙船的速度為________海里/小時?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,AB=AC.D 是 BC 上一點,且 AD=BD.將△ABD 繞點 A 逆時針旋轉(zhuǎn)得到△ACE.
(1)求證:AE∥BC;
(2)連結(jié) DE,判斷四邊形 ABDE 的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為5的菱形OABC中,sin∠AOC=,O為坐標(biāo)原點,A點在x軸的正半軸上,B,C兩點都在第一象限.點P以每秒1個單位的速度沿O→A→B→C→O運動一周,設(shè)運動時間為t(秒).請解答下列問題:
(1)當(dāng)CP⊥OA時,求t的值;
(2)當(dāng)t<10時,求點P的坐標(biāo)(結(jié)果用含t的代數(shù)式表示);
(3)以點P為圓心,以O(shè)P為半徑畫圓,當(dāng)⊙P與菱形OABC的一邊所在直線相切時,請直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】物理興趣小組20位同學(xué)在實驗操作中的得分情況如下表:(Ⅰ)求這組數(shù)據(jù)的眾數(shù)、中位數(shù);(Ⅱ)求這組數(shù)據(jù)的平均數(shù);(Ⅲ)將此次操作得分按人數(shù)制成如圖所示的扇形統(tǒng)計圖.扇形①的圓心角度數(shù)是多少?
得分(分) | 10 | 9 | 8 | 7 |
人數(shù)(人) | 5 | 8 | 4 | 3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知 A、B是線段MN上的兩點,MN4,MA1,MB1.以A為中心順 時針旋轉(zhuǎn)點M,以B為中心逆時針旋轉(zhuǎn)點N,使MN 兩點重合成一點C,構(gòu)成△ABC,設(shè)ABx.(1)則x的取值范圍是_________;(2)△ABC的最大面積是_________.
C
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一個二次函數(shù)的圖象,三位同學(xué)分別說出了它的一些特點:
甲:對稱軸為直線x=4
乙:與x軸兩個交點的橫坐標(biāo)都是整數(shù).
丙:與y軸交點的縱坐標(biāo)也是整數(shù),且以這三個點為頂點的三角形面積為3.請你寫出滿足上述全部特點的一個二次函數(shù)解析式__________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=-x2+bx+c的部分圖象如圖所示,A(1,0),B(0,3).
(1)求拋物線的解析式;
(2)結(jié)合函數(shù)圖象,寫出當(dāng)y<3時x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在平面直角坐標(biāo)系xOy中,Rt△OCD的一邊OC在x軸上,∠C=90°,點D在第一象限,OC=3,DC=4,反比例函數(shù)的圖象經(jīng)過OD的中點A.
(1)求點A的坐標(biāo)及該反比例函數(shù)的解析式;
(2)若該反比例函數(shù)的圖象與Rt△OCD的另一邊DC交于點B,求過A、B兩點的直線的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com