如圖,在Rt△AOB中,∠A=90o ∠AOB=60o ,在邊長為1的小正方形組成的網(wǎng)格中,△AOB的頂點(diǎn)O、A均在格點(diǎn)上,點(diǎn)B在x軸上,點(diǎn)A的坐標(biāo)為(-1,2).

(1) 點(diǎn)A關(guān)于點(diǎn)O中心對稱的點(diǎn)的坐標(biāo)為         

(2) △AOB繞點(diǎn)O順時針旋轉(zhuǎn)60º后得到△A1OB1 那么點(diǎn)A1的坐標(biāo)為          ;線段AB在旋轉(zhuǎn)過程中所掃過的面積是      __

 


(1) (1,-2) ………………………………………………2分

(2)  點(diǎn)A1的坐標(biāo)為(1,2)………………………………4分

線段AB在旋轉(zhuǎn)過程中所掃過的面積是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△AOB中,∠AOB=90°,OA=3cm,OB=4cm,以點(diǎn)O為坐標(biāo)原點(diǎn)建立坐標(biāo)系,設(shè)P、Q精英家教網(wǎng)分別為AB、OB邊上的動點(diǎn)它們同時分別從點(diǎn)A、O向B點(diǎn)勻速運(yùn)動,速度均為1cm/秒,設(shè)P、Q移動時間為t(0≤t≤4)
(1)過點(diǎn)P做PM⊥OA于M,求證:AM:AO=PM:BO=AP:AB,并求出P點(diǎn)的坐標(biāo)(用t表示);
(2)求△OPQ面積S(cm2),與運(yùn)動時間t(秒)之間的函數(shù)關(guān)系式,當(dāng)t為何值時,S有最大值?最大是多少?
(3)當(dāng)t為何值時,△OPQ為直角三角形?
(4)證明無論t為何值時,△OPQ都不可能為正三角形.若點(diǎn)P運(yùn)動速度不變改變Q的運(yùn)動速度,使△OPQ為正三角形,求Q點(diǎn)運(yùn)動的速度和此時t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△AOB中,∠ABO=90°,OB=4,AB=8,且反比例函數(shù)y=
kx
在第一象限內(nèi)的圖象分別交OA、AB于點(diǎn)C和點(diǎn)D,連結(jié)OD,若S△BOD=4,
(1)求反比例函數(shù)解析式;
(2)求C點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•咸寧)如圖,在Rt△AOB中,OA=OB=3
2
,⊙O的半徑為1,點(diǎn)P是AB邊上的動點(diǎn),過點(diǎn)P作⊙O的一條切線PQ(點(diǎn)Q為切點(diǎn)),則切線PQ的最小值為
2
2
2
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•安溪縣質(zhì)檢)如圖,在Rt△AOB中,∠AOB=90°,OA=3,OB=4,將△AOB沿x軸依次以點(diǎn)A、B、O為旋轉(zhuǎn)中心從①的位置順時針旋轉(zhuǎn),分別得②、③、…,則:
(1)旋轉(zhuǎn)得到圖③的直角頂點(diǎn)的坐標(biāo)為
(12,0)
(12,0)
;
(2)旋轉(zhuǎn)得到圖⑩的直角頂點(diǎn)的坐標(biāo)為
(36,0)
(36,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•南崗區(qū)一模)如圖,在Rt△AOB中,∠AOB=90°,且AO=8,BO=6,P是線段AB上一個動點(diǎn),PE⊥A0于E,PF⊥B0于F.設(shè)
PE=x,矩形PFOE的面積為S
(1)求出S與x的函數(shù)關(guān)系式;
(2)當(dāng)x為何值時,矩形PFOE的面積S最大?最大面積是多少?

查看答案和解析>>

同步練習(xí)冊答案