A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
分析 ①正確.由△EBC≌△FCD(SAS),推出∠CFD=∠BEC,推出∠BCE+∠BEC=∠BCE+∠CFD=90°,推出∠DOC=90°.
②錯(cuò)誤.用反證法證明.
③正確.易證得∠OCD=∠DFC,由此tan∠OCD=tan∠DFC=$\frac{DC}{FC}$=$\frac{4}{3}$.
④正確.由△EBC≌△FCD,推出S△EBC=S△FCD,推出S△EBC-S△FOC=S△FCD-S△FOC,即S△ODC=S四邊形BEOF.
解答 解:∵正方形ABCD的邊長(zhǎng)為4,
∴BC=CD=4,∠B=∠DCF=90°,
∵AE=BF=1,
∴BE=CF=4-1=3,
在△EBC和△FCD中,
$\left\{\begin{array}{l}{BC=CD}\\{∠B=∠DCF}\\{BE=CF}\end{array}\right.$,
∴△EBC≌△FCD(SAS),
∴∠CFD=∠BEC,
∴∠BCE+∠BEC=∠BCE+∠CFD=90°,
∴∠DOC=90°,故①正確;
連接DE,如圖所示:
若OC=OE,
∵DF⊥EC,
∴CD=DE,
∵CD=AD<DE(矛盾),故②錯(cuò)誤;
∵∠OCD+∠CDF=90°,∠CDF+∠DFC=90°,
∴∠OCD=∠DFC,
∴tan∠OCD=tan∠DFC=$\frac{DC}{FC}$=$\frac{4}{3}$,故③正確;
∵△EBC≌△FCD,
∴S△EBC=S△FCD,
∴S△EBC-S△FOC=S△FCD-S△FOC,
即S△ODC=S四邊形BEOF,故④正確;
故選C.
點(diǎn)評(píng) 此題考查了正方形的性質(zhì)、全等三角形的判定與性質(zhì)、直角三角形的性質(zhì)以及三角函數(shù)等知識(shí),解題的關(guān)鍵是正確尋找全等三角形解決問(wèn)題,學(xué)會(huì)用反證法的方法證明②錯(cuò)誤,屬于中考常考題型.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=x2-2 | B. | y=x2+2 | C. | y=(x-2)2 | D. | y=(x+2)2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0個(gè) | B. | 1個(gè) | C. | 2個(gè) | D. | 3個(gè) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com