【題目】南沙群島是我國(guó)固有領(lǐng)土,現(xiàn)在我南海漁民要在南沙某海島附近進(jìn)行捕魚(yú)作業(yè),當(dāng)漁船航行至B處時(shí),測(cè)得該島位于正北方向20(1+ )海里的C處,為了防止某國(guó)海巡警干擾,就請(qǐng)求我A處的漁監(jiān)船前往C處護(hù)航,已知C位于A處的北偏東45°方向上,A位于B的北偏西30°的方向上,求A、C之間的距離.

【答案】解:如圖,作AD⊥BC,垂足為D,

由題意得,∠ACD=45°,∠ABD=30°.
設(shè)CD=x,在Rt△ACD中,可得AD=x,
在Rt△ABD中,可得BD= x,
又∵BC=20(1+ ),CD+BD=BC,
即x+ x=20(1+ ),
解得:x=20,
∴AC= x=20 (海里).
答:A、C之間的距離為20 海里.
【解析】作AD⊥BC,垂足為D,設(shè)CD=x,利用解直角三角形的知識(shí),可得出AD,繼而可得出BD,結(jié)合題意BC=CD+BD可得出方程,解出x的值后即可得出答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知梯形ABCD,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3,
問(wèn)題1:如圖1,P為AB邊上的一點(diǎn),以PD,PC為邊作平行四邊形PCQD,請(qǐng)問(wèn)對(duì)角線PQ,DC的長(zhǎng)能否相等,為什么?
問(wèn)題2:如圖2,若P為AB邊上一點(diǎn),以PD,PC為邊作平行四邊形PCQD,請(qǐng)問(wèn)對(duì)角線PQ的長(zhǎng)是否存在最小值?如果存在,請(qǐng)求出最小值,如果不存在,請(qǐng)說(shuō)明理由.
問(wèn)題3:若P為AB邊上任意一點(diǎn),延長(zhǎng)PD到E,使DE=PD,再以PE,PC為邊作平行四邊形PCQE,請(qǐng)?zhí)骄繉?duì)角線PQ的長(zhǎng)是否也存在最小值?如果存在,請(qǐng)求出最小值,如果不存在,請(qǐng)說(shuō)明理由.
問(wèn)題4:如圖3,若P為DC邊上任意一點(diǎn),延長(zhǎng)PA到E,使AE=nPA(n為常數(shù)),以PE、PB為邊作平行四邊形PBQE,請(qǐng)?zhí)骄繉?duì)角線PQ的長(zhǎng)是否也存在最小值?如果存在,請(qǐng)求出最小值,如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,利用一面墻(墻的長(zhǎng)度不超過(guò)45m),用80m長(zhǎng)的籬笆圍一個(gè)矩形場(chǎng)地.

(1)怎樣圍才能使矩形場(chǎng)地的面積為750m2?
(2)能否使所圍矩形場(chǎng)地的面積為810m2 , 為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠A=36°,且BC=2,則AB=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在正方形ABCD中,點(diǎn)E,F(xiàn)分別是邊BC,AB上的點(diǎn),且CE=BF.連接DE,過(guò)點(diǎn)E作EG⊥DE,使EG=DE,連接FG,F(xiàn)C.

(1)請(qǐng)判斷:FG與CE的數(shù)量關(guān)系是 , 位置關(guān)系是;
(2)如圖2,若點(diǎn)E,F(xiàn)分別是邊CB,BA延長(zhǎng)線上的點(diǎn),其它條件不變,(1)中結(jié)論是否仍然成立?請(qǐng)作出判斷并給予證明;
(3)如圖3,若點(diǎn)E,F(xiàn)分別是邊BC,AB延長(zhǎng)線上的點(diǎn),其它條件不變,(1)中結(jié)論是否仍然成立?請(qǐng)直接寫(xiě)出你的判斷.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù)且a≠0)的圖象如圖所示,則一次函數(shù)y=ax+b與反比例函數(shù)y= 的圖象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為加強(qiáng)中小學(xué)生安全和禁毒教育,某校組織了“防溺水、交通安全、禁毒”知識(shí)競(jìng)賽,為獎(jiǎng)勵(lì)在競(jìng)賽中表現(xiàn)優(yōu)異的班級(jí),學(xué)校準(zhǔn)備從體育用品商場(chǎng)一次性購(gòu)買(mǎi)若干個(gè)足球和籃球(每個(gè)足球的價(jià)格相同,每個(gè)籃球的價(jià)格相同),購(gòu)買(mǎi)1個(gè)足球和1個(gè)籃球共需159元;足球單價(jià)是籃球單價(jià)的2倍少9元.
(1)求足球和籃球的單價(jià)各是多少元?
(2)根據(jù)學(xué)校實(shí)際情況,需一次性購(gòu)買(mǎi)足球和籃球共20個(gè),但要求購(gòu)買(mǎi)足球和籃球的總費(fèi)用不超過(guò)1550元,學(xué)校最多可以購(gòu)買(mǎi)多少個(gè)足球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某居民小區(qū)一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,下圖是水平放置的破裂管道有水部分的截面.

(1)請(qǐng)你補(bǔ)全這個(gè)輸水管道的圓形截面;
(2)若這個(gè)輸水管道有水部分的水面寬AB=16cm,水面最深地方的高度為4cm,求這個(gè)圓形截面的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)是(0,3),點(diǎn)B在x軸上,將△AOB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到△ACD,點(diǎn)O、B對(duì)應(yīng)點(diǎn)分別是C、D.

(1)若點(diǎn)B的坐標(biāo)是(﹣4,0),請(qǐng)?jiān)趫D中畫(huà)出△ACD,并寫(xiě)出點(diǎn)C、D的坐標(biāo);
(2)當(dāng)點(diǎn)D落在第一象限時(shí),試寫(xiě)出一個(gè)符合條件的點(diǎn)B的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案