【題目】圓桌面(桌面中間有一個(gè)直徑為0.4m的圓洞)正上方的燈泡(看作一個(gè)點(diǎn))發(fā)出的光線照射平行于地面的桌面后,在地面上形成如圖所示的圓環(huán)形陰影.已知桌面直徑為1.2m,桌面離地面1m,若燈泡離地面3m,則地面圓環(huán)形陰影的面積是( 。
A.0.324πm2
B.0.288πm2
C.1.08πm2
D.0.72πm2
【答案】D
【解析】解:如圖所示:∵AC⊥OB,BD⊥OB,
∴△AOC∽△BOC,
∴ = ,即 = ,
解得:BD=0.9m,
同理可得:AC′=0.2m,則BD′=0.3m,
∴S圓環(huán)形陰影=0.92π﹣0.32π=0.72π(m2).
故選:D.
先根據(jù)AC⊥OB,BD⊥OB可得出△AOC∽△BOD,由相似三角形的對應(yīng)邊成比例可求出BD的長,進(jìn)而得出BD′=0.3m,再由圓環(huán)的面積公式即可得出結(jié)論.本題考查的是相似三角形的應(yīng)用以及中心投影,利用相似三角形的對應(yīng)邊成比例得出陰影部分的半徑是解題關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=5cm,∠BAC=60°,動(dòng)點(diǎn)M從點(diǎn)B出發(fā),在BA邊上以每秒2cm的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)N從點(diǎn)C出發(fā),在CB邊上以每秒 cm的速度向點(diǎn)B勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(0≤t≤5),連接MN.
(1)若BM=BN,求t的值;
(2)若△MBN與△ABC相似,求t的值;
(3)當(dāng)t為何值時(shí),四邊形ACNM的面積最?并求出最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點(diǎn)M、N是∠ABC與∠ACB三等分線的交點(diǎn),若∠A=60°,則∠BMN的度數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD平分∠BAC交BC于點(diǎn)D,AE⊥BC,垂足為E,且CF∥AD.
(1)如圖1,若△ABC是銳角三角形,∠B=30°,∠ACB=70°,則∠CFE= 度;
(2)若圖1中的∠B=x,∠ACB=y,則∠CFE= ;(用含x、y的代數(shù)式表示)
(3)如圖2,若△ABC是鈍角三角形,其他條件不變,則(2)中的結(jié)論還成立嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(5,0),菱形OABC的頂點(diǎn)B,C都在第一象限,tan∠AOC= ,將菱形繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)角α(0°<∠α<∠AOC)得到菱形FADE(點(diǎn)O的對應(yīng)點(diǎn)為點(diǎn)F),EF與OC交于點(diǎn)G,連結(jié)AG.
(1)求點(diǎn)B的坐標(biāo).
(2)當(dāng)OG=4時(shí),求AG的長.
(3)求證:GA平分∠OGE.
(4)連結(jié)BD并延長交x軸于點(diǎn)P,當(dāng)點(diǎn)P的坐標(biāo)為(12,0)時(shí),求點(diǎn)G的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是由若干個(gè)完全相同的小正方體組成的一個(gè)幾何體.
(1)請畫出這個(gè)幾何體的左視圖和俯視圖;(用陰影表示)
(2)如果在這個(gè)幾何體上再添加一些相同的小正方體,并保持這個(gè)幾何體的俯視圖和左視圖不變,那么最多可以再添加幾個(gè)小正方體?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB是⊙O的直徑,∠B=30°,CE平分∠ACB交⊙O于E,交AB于點(diǎn)D,連接AE,則S△ADE:S△CDB的值等于( 。
A.1:
B.1:
C.1:2
D.2:3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A、B、C的坐標(biāo)分別為(﹣1,3)、(﹣4,1)(﹣2,1),先將△ABC沿一確定方向平移得到△A1B1C1 , 點(diǎn)B的對應(yīng)點(diǎn)B1的坐標(biāo)是(1,2),再將△A1B1C1繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到△A2B2C2 , 點(diǎn)A1的對應(yīng)點(diǎn)為點(diǎn)A2 .
(1)畫出△A1B1C1;
(2)畫出△A2B2C2;
(3)求出在這兩次變換過程中,點(diǎn)A經(jīng)過點(diǎn)A1到達(dá)A2的路徑總長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AB=5cm,AC=2cm,將△ABC繞頂點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)45°至△A1B1C的位置,則線段AB掃過區(qū)域(圖中的陰影部分)的面積為cm2 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com