【題目】若平面直角坐標系內(nèi)的點 M 滿足橫、縱坐標都為整數(shù),則把點 M 叫做“整點”.例如:P(1,0)、Q(2,-2)都是“整點”.拋物線 y=mx2-2mx+m-1(m>0)與 x 軸交于 A、 B 兩點,若該拋物線在 A、B 之間的部分與線段 AB 所圍成的區(qū)域(包括邊界)恰有 6 個整點,則 m 的取值范圍是( )
A. m B. m C. m D. m
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,E在AC上,經(jīng)過A,B,E三點的圓O交BC于點D,且D點是弧BE的中點,
(1)求證AB是圓的直徑;
(2)若AB=8,∠C=60°,求陰影部分的面積;
(3)當∠A為銳角時,試說明∠A與∠CBE的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖,二次函數(shù)的圖象經(jīng)過A(3,3),與x軸正半軸交于B點,與y軸交于C點,△ABC的外接圓恰好經(jīng)過原點O.
(1)求B點的坐標及二次函數(shù)的解析式;
(2)拋物線上一點Q(m,m+3),(m為整數(shù)),點M為△ABC的外接圓上一動點,求線段QM長度的范圍;
(3)將△AOC繞平面內(nèi)一點P旋轉(zhuǎn)180°至△A'O'C'(點O'與O為對應(yīng)點),使得該三角形的對應(yīng)點中的兩個點落在的圖象上,求出旋轉(zhuǎn)中心P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC的三個頂點的坐標分別為A(﹣2,3)、B(﹣6,0)、C(﹣1,0).
(1)畫出△ABC關(guān)于原點成中心對稱的三角形△A′B′C′;
(2)將△ABC繞坐標原點O逆時針旋轉(zhuǎn)90°,畫出圖形,直接寫出點B的對應(yīng)點B″的坐標;
(3)請直接寫出:以A、B、C為頂點的平行四邊形的第四個頂點D的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將兩個全等的直角三角形ABC和DBE按圖方式擺放,其中,,點E落在AB上,DE所在直線交AC所在直線于點F.
求證:;
若將圖中的繞點B按順時針方向旋轉(zhuǎn)角a,且,其他條件不變,如圖請你直接寫出與DE的大小關(guān)系:______填“”或“”或“”
若將圖中的繞點B按順時針方向旋轉(zhuǎn)角,且,其他條件不變,如圖請你寫出此時AF、EF與DE之間的關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xoy中, 一塊含60°角的三角板作如圖擺放,斜邊 AB在x軸上,直角頂點C在y軸正半軸上,已知點A(-1,0).
(1)請直接寫出點B、C的坐標:B( , )、C( , );并求經(jīng)過A、B、C三點的拋物
線解析式;
(2)現(xiàn)有與上述三角板完全一樣的三角板DEF(其中∠EDF=90°,∠DEF=60°),把頂點E放在線段
AB上(點E是不與A、B兩點重合的動點),并使ED所在直線經(jīng)過點C. 此時,EF所在直線與(1)中的拋物線交于第一象限的點M.
①設(shè)AE=x,當x為何值時,△OCE∽△OBC;
②在①的條件下探究:拋物線的對稱軸上是否存在點P使△PEM是等腰三角形,若存在,請求點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:在梯形ABCD中,AD//BC,AC=BC=10,,點E在對角線AC上,且CE=AD,BE的延長線與射線AD、射線CD分別相交于點F、G.設(shè)AD=x,△AEF的面積為y.
(1)求證:∠DCA=∠EBC;
(2)如圖,當點G在線段CD上時,求y關(guān)于x的函數(shù)解析式,并寫出它的定義域;
(3)如果△DFG是直角三角形,求△AEF的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】合肥市某學校搬遷,教師和學生的寢室數(shù)量在增加,若該校今年準備建造三類不同的寢室,分別為單人間(供一個人住宿),雙人間(供兩個人住宿),四人間(供四個人住宿).因?qū)嶋H需要,單人間的數(shù)量在20至30之間(包括20和30),且四人間的數(shù)量是雙人間的5倍.
(1)若2015年學校寢室數(shù)為64個,2017年建成后寢室數(shù)為121個,求2015至2017年的平均增長率;
(2)若建成后的寢室可供600人住宿,求單人間的數(shù)量;
(3)若該校今年建造三類不同的寢室的總數(shù)為180個,則該校的寢室建成后最多可供多少師生住宿?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com