【題目】如圖,將矩形ABCD繞點(diǎn)A旋轉(zhuǎn)至矩形ABCD′位置,此時(shí)AC的中點(diǎn)恰好與D點(diǎn)重合,AB'CD于點(diǎn)E,若AB3cm,則線段EB′的長為_____

【答案】1cm

【解析】

根據(jù)旋轉(zhuǎn)后AC的中點(diǎn)恰好與D點(diǎn)重合,利用旋轉(zhuǎn)的性質(zhì)得到直角三角形ACD中,∠ACD30°,再由旋轉(zhuǎn)后矩形與已知矩形全等及矩形的性質(zhì)得到∠DAE30°,進(jìn)而求出AD,DEAE的長,則EB′的長可求出.

解:由旋轉(zhuǎn)的性質(zhì)可知:ACAC',

DAC'的中點(diǎn),

ADAC,

ABCD是矩形,

ADCD

∴∠ACD30°,

ABCD

∴∠CAB30°,

∴∠C'AB'=∠CAB30°,

∴∠EAC30°,

∴∠DAE30°,

ABCD3cm,

ADcm,

DE1cm,

AE2cm

ABAB'3cm,

EB'321cm

故答案為:1cm

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A,點(diǎn)C在反比例函數(shù)yk0,x0)的圖象上,ABx軸于點(diǎn)BOCAB于點(diǎn)D,若CDOD,則AODBCD的面積比為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形 ABCD是菱形,BC∥x 軸.AD y軸交于點(diǎn) E,反比例函數(shù) yx0)的圖象經(jīng)過頂點(diǎn) CD,已知點(diǎn) C的橫坐標(biāo)為5BE2DE,則 k的值為(

A.B.C.D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著第27屆信陽茶文化節(jié)發(fā)布會(huì)、固始西九華山第三屆郁金香風(fēng)情文化節(jié)等系列活動(dòng)的成功舉辦,越來越多的游客想要到信陽游玩小明所在的公司想在五一黃金周期間組織員工去信陽游玩,咨詢了甲、乙兩家旅行社,兩家旅行社分別推出優(yōu)惠方案(未推出優(yōu)惠方案前兩家旅行社的收費(fèi)標(biāo)準(zhǔn)相同).甲:購買一張團(tuán)體票,然后個(gè)人票打六折優(yōu)惠;乙:不購買團(tuán)體票,當(dāng)團(tuán)體人數(shù)超過一定數(shù)量后超過部分的個(gè)人票打折優(yōu)惠,優(yōu)惠期間,公司的員工人數(shù)為x(人),在甲旅行社所需總費(fèi)用為(元),在乙旅行社所需總費(fèi)用為(元).x之間的函數(shù)關(guān)系如圖所示.

1)甲旅行社團(tuán)體票是______元,乙旅行社團(tuán)體人數(shù)超過一定數(shù)量后,個(gè)人票打______折;

2)求、關(guān)于x的函數(shù)表達(dá)式;

3)請(qǐng)說明小明所在的公司選擇哪個(gè)旅行社出游更劃算.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)y=﹣2x+b與反比例函數(shù)y的圖象有兩個(gè)交點(diǎn)Am3)和B,且一次函數(shù)y=﹣2x+bx軸、y軸分別交于點(diǎn)C、D.過點(diǎn)AAEx軸于點(diǎn)E;過點(diǎn)BBFy軸于點(diǎn)F,點(diǎn)F的坐標(biāo)為(0,﹣2),連接EF,tanFEO2

1)求一次函數(shù)與反比例函數(shù)的解析式;

2)求四邊形AEFD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點(diǎn)O在邊AC上,⊙O與△ABC的邊BC,AB分別相切于C,D兩點(diǎn),與邊AC交于E點(diǎn),弦CFAB平行,與DO的延長線交于M點(diǎn).

1)求證:點(diǎn)MCF的中點(diǎn);

2)若E的中點(diǎn),BCa,

的弧長;

的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線經(jīng)過A-1,0),B3,0)與點(diǎn)C0,3),連接BC,點(diǎn)P是直線BC是上方的一個(gè)動(dòng)點(diǎn)(且不與B,C重合).

1)求拋物線的解析式;

2)求PBC的面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣x+4x軸、y軸分別交于點(diǎn)A、B,拋物線y=﹣xm2+n的頂點(diǎn)P在直線y=﹣x+4上,與y軸交于點(diǎn)C(點(diǎn)P、C不與點(diǎn)B重合),以BC為邊作矩形BCDE,且CD=2,點(diǎn)P、Dy軸的同側(cè).

1n=________(用含m的代數(shù)式表示),點(diǎn)C的縱坐標(biāo)是________(用含m的代數(shù)式表示);

2)當(dāng)點(diǎn)P在矩形BCDE的邊DE上,且在第一象限時(shí),求拋物線對(duì)應(yīng)的函數(shù)解析式;

3)直接寫出矩形BCDE有兩個(gè)頂點(diǎn)落在拋物線上時(shí)m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx﹣2(a≠0)的圖象的頂點(diǎn)在第三象限,且過點(diǎn)(1,0),設(shè)t=a﹣b﹣2,則t值的變化范圍是(  )

A. ﹣2<t<0 B. ﹣3<t<0 C. ﹣4<t<﹣2 D. ﹣4<t<0

查看答案和解析>>

同步練習(xí)冊(cè)答案