【題目】如圖乙,和是有公共頂點的等腰直角三角形,,點P為射線BD,CE的交點.
如圖甲,將繞點A旋轉,當C、D、E在同一條直線上時,連接BD、BE,則下列給出的四個結論中,其中正確的是______.
若,,把繞點A旋轉,
當時,求PB的長;
求旋轉過程中線段PB長的最大值.
【答案】(1);(2)或;PB長的最大值是.
【解析】
(1)①由條件證明≌,就可以得到結論;
②由≌就可以得出,就可以得出,進而得出結論;
③由條件知,由就可以得出結論;
④為直角三角形就可以得出,由和是等腰直角三角形就有,,就有就可以得出結論;
(2)①分兩種情形a、如圖乙中,當點E在AB上時,,由∽,得,由此即可解決問題;、如圖乙中,當點E在BA延長線上時,,解法類似;
②如圖乙中,以A為圓心AD為半徑畫圓,當CE在上方與相切時,PB的值最大,分別求出PB即可;
解:如圖甲:
①,
,
即,
在和中,
,
≌,
,故①正確;
②≌,
,
,
,
.
,
,
.
,故②正確;
③,,
,
.
,故③正確;
④,
,
,,,
,,
,
,
,故④錯誤;
故答案為①②③;
(2)①解:a、如圖2中,當點E在AB上時,.
,
,
同可證≌.
.
,
∽,,
,
,
;
b、如圖3中,當點E在BA延長線上時,;
,
,
同可證≌.
.
,
∽,
,
,
;
綜上,或;
解:如圖5中,以A為圓心AD為半徑畫圓,當CE在上方與相切時,PB的值最大;
理由:此時最大,因此PB最大是直角三角形,斜邊BC為定值,最大,因此PB最大,
,
,
由可知,≌,
,,
,
四邊形AEPD是矩形,
,
.
綜上所述,PB長的最大值是.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,大樓AB右側有一障礙物,在障礙物的旁邊有一幢小樓DE,在小樓的頂端D處測得障礙物邊緣點C的俯角為30°,測得大樓頂端A的仰角為45°(點B,C,E在同一水平直線上),已知AB=80 m,DE=10 m,求障礙物B,C兩點間的距離.(結果精確到0.1 m)(參考數(shù)據(jù): ≈1.414,、≈1.732)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點A,BD⊥直線m, CE⊥直線m,垂足分別為點D、E.證明:DE=BD+CE.
(2) 如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=,其中為任意銳角或鈍角.請問結論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.
(3)拓展與應用:如圖(3),D、E是D、A、E三點所在直線m上的兩動點(D、A、E三點互不重合),點F為∠BAC平分線上的一點,且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,線段AB=8,射線BG⊥AB,P為射線BG上一點,連接AP,作AP⊥CP且AP=CP,連接AC,PD平分∠APC,且C、D與點B在AP兩側,在線段DP取一點E,使∠EAP=∠BAP,連接CE與線段AB相交于點F(點F與點A、B不重合).
(1)求證:△AEP≌△CEP;
(2)判斷CF與AB的位置關系,并說明理由;
(3)求△AEF的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD,AC是∠BAD的角平分線.
(1)求證:△ABC≌△ADC.
(2)若∠BCD=60°,AC=BC,求∠ADB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,E為AC上一點,且AE=BC,過點A作AD⊥CA,垂足為A,且AD=AC,AB、DE交于點F.試判斷線段AB與DE的數(shù)量關系和位置關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線經(jīng)過點A(,0),B(,0),且與y軸相交于點C.
(1)求這條拋物線的表達式;
(2)求∠ACB的度數(shù);
(3)設點D是所求拋物線第一象限上一點,且在對稱軸的右側,點E在線段AC上,且DE⊥AC,當△DCE與△AOC相似時,求點D的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個長為8分米,寬為5分米,高為7分米的長方體上,截去一個長為6分米,寬為5分米,深為2分米的長方體后,得到一個如圖所示的幾何體.一只螞蟻要從該幾何體的頂點A處,沿著幾何體的表面到幾何體上和A相對的頂點B處吃食物,那么它需要爬行的最短路徑的長是 分米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有、、三個居民小區(qū)的位置成三角形,現(xiàn)決定在三個小區(qū)之間修建一個購物超市,使超市到三個小區(qū)的距離相等,則超市應建在( )
A.在∠A、∠B兩內角平分線的交點處
B.在AC、BC兩邊垂直平分線的交點處
C.在AC、BC兩邊高線的交點處
D.在AC、BC兩邊中線的交點處
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com