△ACD中,∠ACD=120°:
(1)根據(jù)題意畫圖:把△ACD繞頂點C逆時針旋轉(zhuǎn)60°得到△BCE,AD交于EC于N,BE交AC于M,連接MN;
(2)MN與BD具有怎樣的位置關系?請說明理由.

解:(1)所畫圖形如下所示:


(2)MN與BD平行,理由如下:
連接AB和DE,

∵∠ACD=120°,
∴可知△CDE和△ABC為等邊三角形,
∴AC∥DE,AB∥CE,
繼而有=,
根據(jù)平行線分線段成比例的性質(zhì),可知MN∥BD.
分析:(1)找出△ACD繞頂點C逆時針旋轉(zhuǎn)60°后的對應點,然后順次連接即可;
(2)MN與BD平行,可利用如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于三角形的第三邊進行證明.
點評:本題考查旋轉(zhuǎn)變換作圖的問題,根據(jù)旋轉(zhuǎn)的性質(zhì)可知,對應角都相等都等于旋轉(zhuǎn)角,對應線段也相等,由此可以通過作相等的角,在角的邊上截取相等的線段的方法,找到對應點,順次連接得出旋轉(zhuǎn)后的圖形.解答第二問時,注意如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于三角形的第三邊這一定理的掌握和靈活運用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)△ACD中,∠ACD=120°:
(1)根據(jù)題意畫圖:把△ACD繞頂點C逆時針旋轉(zhuǎn)60°得到△BCE,AD交于EC于N,BE交AC于M,連接MN;
(2)MN與BD具有怎樣的位置關系?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•黃陂區(qū)模擬)如圖,Rt△ACD中,∠ACD=90°.以AC邊為直徑作⊙O,交AD于E.過E作⊙O的切線EB,交CD于B.連接EC、AB,交于F點.
(1)求證:EB=
1
2
CD
;
(2)若
EF
FC
=
1
3
,求tan∠ABC的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

課題研究
(1)如圖(1),我們已經(jīng)學習了直角三角形中的邊角關系,在Rt△ACD中,sin∠A=______,所以CD=______,而S△ABC=數(shù)學公式AB•CD,于是可將三角形面積公式變形,得S△ABC=______.①其文字語言表述為:三角形的面積等于兩邊及其夾角正弦積的一半.這就是我們將要在高中學習的正弦定理.
(2)如圖(2),在△ABC中,CD⊥AB于D,∠ACD=α,∠DCB=β.
∵S△ABC=S△ADC+S△BDC,由公式①,得
數(shù)學公式,即數(shù)學公式②.
請你利用直角三角形邊角關系,消去②中的AC、BC、CD,將得到新的結(jié)論.并寫出解決過程.
(3)利用(2)中的結(jié)論,試求sin75°和sin105°的值,并比較其大.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年江蘇省連云港市中考數(shù)學原創(chuàng)試卷大賽(22)(解析版) 題型:解答題

閱讀下面的材料,并回答所提出的問題:如圖所示,在銳角三角形ABC中,求證:
這個三角形不是一個直角三角形,不能直接使用銳角三角函數(shù)的知識去處理,所以必須構(gòu)造直角三角形,過點A作AD⊥BC,垂足為D,則在Rt△ABD和Rt△ACD中由正弦定義可完成證明.
解:如圖,過點A作AD⊥BC,垂足為D,
在Rt△ABD中,sinB=,則AD=csinB
Rt△ACD中,sinC=,則AD=bsinC
所以c sinB=b sinC,即
(1)在上述分析證明過程中,主要用到了下列三種數(shù)學思想方法的哪一種( )
A、數(shù)形結(jié)合的思想;B、轉(zhuǎn)化的思想;C、分類的思想
(2)用上述思想方法解答下面問題.
在△ABC中,∠C=60°,AC=6,BC=8,求AB和△ABC的面積.
(3)用上述結(jié)論解答下面的問題(不必添加輔助線)
在銳角三角形ABC中,AC=10,AB=,∠C=60°,求∠B的度數(shù).

查看答案和解析>>

同步練習冊答案