【題目】(本題滿分5分)如圖,小明在大樓30米高

(即PH30米)的窗口P處進(jìn)行觀測,測得山

坡上A處的俯角為15°,山腳B處的俯角為

60°,已知該山坡的坡度i(即tan∠ABC)為1

,點(diǎn)P、H、B、CA在同一個平面上.點(diǎn)

H、BC在同一條直線上,且PH⊥HC

(1)山坡坡角(即∠ABC)的度數(shù)等于 度;

(2)A、B兩點(diǎn)間的距離(結(jié)果精確到0.1米,參考數(shù)據(jù):≈1.732).

【答案】解:(1)30

(2)設(shè)過點(diǎn)P的水平線為PQ,則由題意得:

450

答:A、B兩點(diǎn)間的距離約34.6米。

【解析】

試題(1)根據(jù)俯角以及坡度的定義即可求解;

(2)在直角PHB中,根據(jù)三角函數(shù)即可求得PB的長,然后在直角PBA中利用三角函數(shù)即可求解.

試題解析:

(1)∵山坡的坡度i(即tanABC)為1:

tanABC=,

∴∠ABC=30°;

∵從P點(diǎn)望山腳B處的俯角60°,

∴∠PBH=60°,

∴∠ABP=180°﹣30°﹣60°=90°

故答案為:90.

(2)由題意得:∠PBH=60°,

∵∠ABC=30°,

∴∠ABP=90°,

∴△PAB為直角三角形,

又∵∠APB=45°,

在直角PHB中,PB=PH÷sinPBH=45÷ =30(m).

在直角PBA中,AB=PBtanBPA=30≈52.0(m).

A、B兩點(diǎn)間的距離約為52.0米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:ADABC的高,且BDCD

(1)如圖1,求證:∠BADCAD;

(2)如圖2,點(diǎn)EAD上,連接BE,將ABE沿BE折疊得到ABE,ABAC相交于點(diǎn)F,若BEBC,求∠BFC的大;

(3)如圖3,在(2)的條件下,連接EF,過點(diǎn)CCGEF,交EF的延長線于點(diǎn)G,若BF=10,EG=6,求線段CF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在環(huán)境創(chuàng)優(yōu)活動中,某居民小區(qū)要在一塊靠墻(墻長25米)的空地上修建一個矩形養(yǎng)雞場,養(yǎng)雞場的一邊靠墻,如果用60m長的籬笆圍成中間有一道籬笆的養(yǎng)雞場,設(shè)養(yǎng)雞場平行于墻的一邊BC的長為x(m),養(yǎng)雞場的面積為y(m2

(1)求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

(2)養(yǎng)雞場的面積能達(dá)到300m2嗎?若能,求出此時x的值,若不能,說明理由;

(3)根據(jù)(1)中求得的函數(shù)關(guān)系式,判斷當(dāng)x取何值時,養(yǎng)雞場的面積最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)B、C是線段AD上的點(diǎn),△ABE、△BCF、△CDG都是等邊三角形,且AB4,BC6,已知△ABE與△CDG的相似比為25.則

CD____;

②圖中陰影部分面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,BC是⊙O的直徑,∠ABC=30°,過點(diǎn)B作⊙O的切線BD,與CA的延長線交于點(diǎn)D,與半徑AO的延長線交于點(diǎn)E,過點(diǎn)A作⊙O的切線AF,與直徑BC的延長線交于點(diǎn)F.

(1)求證:△ACF∽△DAE;

(2)若S△AOC=,求DE的長;

(3)連接EF,求證:EF是⊙O的切線.

【答案】(1) 見解析; (2)3 ;(3)見解析.

【解析】試題分析:(1)根據(jù)圓周角定理得到BAC=90°,根據(jù)三角形的內(nèi)角和得到ACB=60°根據(jù)切線的性質(zhì)得到OAF=90°,∠DBC=90°,于是得到D=∠AFC=30°由相似三角形的判定定理即可得到結(jié)論;

(2)根據(jù)SAOC=,得到SACF=,通過ACF∽△DAE,求得SDAE=,過AAHDEH,解直角三角形得到AH=DH=DE,由三角形的面積公式列方程即可得到結(jié)論;

(3)根據(jù)全等三角形的性質(zhì)得到OE=OF,根據(jù)等腰三角形的性質(zhì)得到OFG=(180°﹣∠EOF)=30°,于是得到AFO=∠GFO,過OOGEFG,根據(jù)全等三角形的性質(zhì)得到OG=OA,即可得到結(jié)論.

試題解析:(1)證明:BCO的直徑,∴∠BAC=90°,∵∠ABC=30°,∴∠ACB=60°

OA=OC,∴∠AOC=60°,∵AFO的切線,∴∠OAF=90°,∴∠AFC=30°,∵DEO的切線,∴∠DBC=90°,∴∠D=∠AFC=30,∵∠DAE=ACF=120°,∴△ACF∽△DAE

(2)∵∠ACO=∠AFC+∠CAF=30°+∠CAF=60°,∴∠CAF=30°,∴∠CAF=∠AFC,∴AC=CF,∴OC=CF,∵SAOC=,∴SACF=,∵∠ABC=∠AFC=30°,∴AB=AF,∵AB=BD,∴AF=BD,∴∠BAE=∠BEA=30°,∴AB=BE=AF,∴,∵△ACF∽△DAE,∴=,∴SDAE=,過AAHDEH,∴AH=DH=DE,∴SADE=DEAH=×=,∴DE=;

(3)∵∠EOF=∠AOB=120°,∴∠OEB=∠AFO,AOFBOE中,∵∠OBE=∠OAF,∠OEB=∠AFOOA=OB,∴△AOF≌△BEO,∴OE=OF,∴∠OFG=(180°﹣∠EOF)=30°,∴∠AFO=∠GFO,過OOGEFG,∴∠OAF=∠OGF=90°,在AOFOGF中,∵∠OAF=∠OGF,∠AFO=∠GFO,OF=OF,∴△AOF≌△GOF,∴OG=OA,∴EFO的切線.

型】解答
結(jié)束】
25

【題目】如圖,在平面直角坐標(biāo)系中,O為原點(diǎn),四邊形ABCO是矩形,點(diǎn)A,C的坐標(biāo)分別是A(0,2)和C(2,0),點(diǎn)D是對角線AC上一動點(diǎn)(不與A,C重合),連結(jié)BD,作DE⊥DB,交x軸于點(diǎn)E,以線段DE,DB為鄰邊作矩形BDEF.

(1)填空:點(diǎn)B的坐標(biāo)為   

(2)是否存在這樣的點(diǎn)D,使得△DEC是等腰三角形?若存在,請求出AD的長度;若不存在,請說明理由;

(3)①求證:

②設(shè)AD=x,矩形BDEF的面積為y,求y關(guān)于x的函數(shù)關(guān)系式(可利用①的結(jié)論),并求出y的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)AB在反比例函數(shù)k0)的圖象上,ACx軸,BDx軸,垂足C,D分別在x軸的正、負(fù)半軸上,CD=k,已知AB=2AC,EAB的中點(diǎn),且BCE的面積是ADE的面積的2倍,則k的值是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y1=kx+b與二次函數(shù)y2=ax2的圖象交于A(﹣1,n),B(2,4)兩點(diǎn).

(1)利用圖中條件,求兩個函數(shù)的解析式;

(2)根據(jù)圖象直接寫出使y1<y2的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:點(diǎn),,垂足,,垂足為,相交于點(diǎn);

(1)如圖,求證:

(2)如圖,連接,當(dāng)平分,求證:;

(3)如圖,(2)的條件下,半徑相交于點(diǎn),連接,,求線段的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)圖象的一部分如圖所示,給出以下結(jié)論:;當(dāng)時,函數(shù)有最大值;方程的解是,;,其中結(jié)論錯誤的個數(shù)是  

A. 1B. 2C. 3D. 4

查看答案和解析>>

同步練習(xí)冊答案