【題目】如圖,在平面直角坐標(biāo)系xOy中,A點(diǎn)的坐標(biāo)為(1,0).以OA為邊在x軸上方畫(huà)一個(gè)正方形OABC.以原點(diǎn)O為圓心,正方形的對(duì)角線OB長(zhǎng)為半徑畫(huà)弧,與x軸正半軸交于點(diǎn)D.
(1)點(diǎn)D的坐標(biāo)是 ;
(2)點(diǎn)P(x,y),其中x,y滿足2x-y=-4.
①若點(diǎn)P在第三象限,且△OPD的面積為3,求點(diǎn)P的坐標(biāo);
②若點(diǎn)P在第二象限,判斷點(diǎn)E(+1,0)是否在線段OD上,并說(shuō)明理由.
【答案】(1)(,0);(2)①P(-5,-6);②點(diǎn)E在線段OD上,見(jiàn)解析.
【解析】
(1)先求出正方形的邊長(zhǎng),再用勾股定理求出OB,即可得出結(jié)論;
(2)①先表示出PQ,再利用△ODP的沒(méi)解決建立方程求解,即可得出結(jié)論;
②根據(jù)點(diǎn)P在第二象限,求出x的范圍,進(jìn)而判斷出點(diǎn)E在x軸正半軸上,即可得出結(jié)論.
(1)∵四邊形OABC是正方形,且A(1,0),
∴OA=AB=1,
根據(jù)勾股定理得,OB=,
∴OD=,
∴D(,0),
故答案為:(,0);
(2)①如圖,過(guò)點(diǎn)P作PQ⊥x軸于點(diǎn)Q,
∵點(diǎn)P在第三象限,
∴y=2x+4<0,
∴PQ=-(2x+4),
∵D(,0),
∴OD=,
∴S△ODP=ODPQ=3,
即:-××(2x+4)=3,
∴x=-5,
∴P(-5,-6);
②點(diǎn)E在線段OD上,
理由:∵2x-y=-4,
∴y=2x+4,
∵點(diǎn)P在第二象限,
∴,
∴-2<x<0,
∴0<x+1<1,
∴點(diǎn)E在x軸正半軸上,
∵點(diǎn)D在x軸正半軸,OD=,
∴0<OE<OD,
∴點(diǎn)E在線段OD上.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三角形是三角形經(jīng)過(guò)某種變換后得到的圖形.
(1)分別寫(xiě)出點(diǎn)和點(diǎn),點(diǎn)和點(diǎn),點(diǎn)和點(diǎn)的坐標(biāo);
(2)觀察點(diǎn)和點(diǎn),點(diǎn)和點(diǎn),點(diǎn)和點(diǎn)的坐標(biāo),用文字語(yǔ)言描述它們的坐標(biāo)之間的關(guān)系______;
(3)三角形內(nèi)任意一點(diǎn)的坐標(biāo)為,點(diǎn)經(jīng)過(guò)這種變換后得到點(diǎn),則點(diǎn)的坐標(biāo)為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小紅和小明在操場(chǎng)做游戲,他們先在地上畫(huà)了半徑分別2m和3m的同心圓(如圖),蒙上眼在一定距離外向圈內(nèi)擲小石子,擲中陰影小紅勝,否則小明勝,未擲入圈內(nèi)不算,你來(lái)當(dāng)裁判.
(1)你認(rèn)為游戲公平嗎?為什么?
(2)游戲結(jié)束,小明邊走邊想,“反過(guò)來(lái),能否用頻率估計(jì)概率的方法,來(lái)估算某一不規(guī)則圖形的面積呢”.請(qǐng)你設(shè)計(jì)方案,解決這一問(wèn)題.(要求補(bǔ)充完整圖形,說(shuō)明設(shè)計(jì)步驟、原理,寫(xiě)出估算公式)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(≠0)的圖象如圖,給出下列四個(gè)結(jié)論:①4ac﹣b2<0;②3b+2c<0;③4a+c<2b;④m(am+b)+b<a(m≠1),其中結(jié)論正確的個(gè)數(shù)是( )
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,點(diǎn)D是BC邊上的一個(gè)動(dòng)點(diǎn)(不與B、C重合),在AC上取一點(diǎn)E,使∠ADE=30°.
(1)求證:△ABD∽△DCE;
(2)設(shè)BD=x,AE=y,求y關(guān)于x的函數(shù)關(guān)系式并寫(xiě)出自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)南宋數(shù)學(xué)家楊輝用三角形解釋二項(xiàng)和的乘方規(guī)律,稱(chēng)之為“楊輝三角”,這個(gè)三角形給出了(a+b)n (n=1,2,3,4,…)的展開(kāi)式的系數(shù)規(guī)律(按n的次數(shù)由大到小的順序):
1 1 (a+b)1=a+b
1 2 1 (a+b)2=a2+2ab+b2
1 3 3 1 (a+b)3=a3+3a2b+3ab2+b3
1 4 6 4 1 (a+b)4=a4+4a3b+6a2b2+4ab3+b4
…… ……
請(qǐng)依據(jù)上述規(guī)律,寫(xiě)出(x1)2019展開(kāi)式中含x2018項(xiàng)的系數(shù)是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是邊長(zhǎng)為4cm的正方形對(duì)角線的交點(diǎn),是的中點(diǎn),動(dòng)點(diǎn)由點(diǎn)開(kāi)始沿折線方向勻速運(yùn)動(dòng),到點(diǎn)時(shí)停止運(yùn)動(dòng),速度為.設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為,點(diǎn)的運(yùn)動(dòng)路徑與、所圍成的圖形面積為,則描述面積與時(shí)間的關(guān)系的圖象是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠AOB=30°,點(diǎn)P是∠AOB內(nèi)的定點(diǎn),且OP=3.若點(diǎn)M、N分別是射線OA、OB上異于點(diǎn)O的動(dòng)點(diǎn),則△PMN周長(zhǎng)的最小值是( )
A.12B.9C.6D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,旗桿AB的頂端B在夕陽(yáng)的余輝下落在一個(gè)斜坡上的點(diǎn)D處,某校數(shù)學(xué)課外興趣小組的同學(xué)正在測(cè)量旗桿的高度,在旗桿的底部A處測(cè)得點(diǎn)D的仰角為15°,AC=10米,又測(cè)得∠BDA=45°.已知斜坡CD的坡度為i=1:,求旗桿AB的高度(≈1.7,結(jié)果精確到個(gè)位).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com