【題目】如圖,在菱形ABCD中,∠ABC=45°,AB=4,點(diǎn)E是AB邊上的動(dòng)點(diǎn),過點(diǎn)B作直線CE的垂線,垂足為點(diǎn)F.
(1)當(dāng)點(diǎn)F落在AB上時(shí),求∠BCF的度數(shù);
(2)若∠EBF=15°,求CF的長;
(3)當(dāng)點(diǎn)E從點(diǎn)A運(yùn)動(dòng)到點(diǎn)B時(shí),求點(diǎn)F運(yùn)動(dòng)的路徑長.
【答案】(1)∠BCF=45°(2)2或2(3)
【解析】分析:(1)根據(jù)等腰直角三角形的性質(zhì)即可解決問題;
(2)分以下兩種情況:①當(dāng)點(diǎn)F在菱形內(nèi)部時(shí),②當(dāng)點(diǎn)F在菱形外部時(shí);
(3)首先確定點(diǎn)F的運(yùn)動(dòng)軌跡,利用弧長公式計(jì)算即可;
詳解:(1)當(dāng)點(diǎn)F落在AB上時(shí),點(diǎn)E,F重合,即CF⊥AB.
∵∠ABC=45°,∴∠BCF=45°.
(2)分以下兩種情況:
①當(dāng)點(diǎn)F在菱形內(nèi)部時(shí),∠FBC=45°﹣15°=30°.在Rt△BFC中,BC=4,∠FBC=30°,sin30°==,∴CF=2;
②當(dāng)點(diǎn)F在菱形外部時(shí),∠FBC=15°+45°=60°.在Rt△BFC中,BC=4,sin60°==,∴CF=2.
故CF的長為2或2.
(3)如圖,設(shè)BC的中點(diǎn)為點(diǎn)O,以點(diǎn)O為圓心,OB長為半徑畫半圓O,連
接 AC,BD交于點(diǎn)F′,易得點(diǎn)F′在半圓O上,連接OF′.
∵BF⊥CE,∴∠BFC=90°,∴點(diǎn)F在半圓O中的一段弧上運(yùn)動(dòng),當(dāng)點(diǎn)E從點(diǎn)A運(yùn)動(dòng)到點(diǎn)B時(shí),點(diǎn)F的運(yùn)動(dòng)路徑的長為的長.
∵∠ABC=45°,∴∠BCF′=67.5°,∴∠BOF′=135°,∴的長為=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)模仿二維碼的方式為學(xué)校設(shè)計(jì)了一個(gè)身份識(shí)別圖案系統(tǒng):在的正方形網(wǎng)格中,黑色正方形表示數(shù)字1,白色正方形表示數(shù)字0.如圖1是某個(gè)學(xué)生的身份識(shí)別圖案.約定如下:把第i行,第j列表示的數(shù)字記為(其中i,j=1,2,3,4),如圖1中第2行第1列的數(shù)字=0;對(duì)第i行使用公式進(jìn)行計(jì)算,所得結(jié)果表示所在年級(jí),表示所在班級(jí),表示學(xué)號(hào)的十位數(shù)字,表示學(xué)號(hào)的個(gè)位數(shù)字.如圖1中,第二行,說明這個(gè)學(xué)生在5班.
(1)圖1代表的學(xué)生所在年級(jí)是______年級(jí),他的學(xué)號(hào)是_________;
(2)請(qǐng)仿照?qǐng)D1,在圖2中畫出八年級(jí)4班學(xué)號(hào)是36的同學(xué)的身份識(shí)別圖案
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把兩個(gè)全等的等腰直角三角板ABC和EFG(其直角邊長均為4)疊放在一起(如圖1),且使三角板EFG的直角頂點(diǎn)G與三角板ABC的斜邊中點(diǎn)O重合,現(xiàn)將三角板EFG繞O點(diǎn)順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角滿足條件四邊形CHGK是旋轉(zhuǎn)過程中兩三角板的重疊部分(如圖2).
(1)在上述旋轉(zhuǎn)過程中,BH與CK有怎樣的數(shù)量關(guān)系?證明你的結(jié)論;
(2)在上述旋轉(zhuǎn)過程中,兩個(gè)直角三角形的重疊部分面積是否會(huì)發(fā)生改變?證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在菱形中,對(duì)角線,,是的中點(diǎn),點(diǎn)分別是上動(dòng)點(diǎn),連接,則的最小值是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A、B的坐標(biāo)分別為(6,6)、(6,0).拋物線的頂點(diǎn)P在折線OAAB上運(yùn)動(dòng).
(1)當(dāng)點(diǎn)P在線段OA上運(yùn)動(dòng)時(shí),拋物線與y軸交點(diǎn)坐標(biāo)為(0,c).
①用含m的代數(shù)式表示n;
②求c的取值范圍;
(2)當(dāng)拋物線經(jīng)過點(diǎn)B時(shí),求拋物線所對(duì)應(yīng)的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=x2+bx+c的圖象交x軸于A、D兩點(diǎn),并經(jīng)過B點(diǎn),已知A點(diǎn)坐標(biāo)是(2,0),B點(diǎn)坐標(biāo)是(8,6).
(1)求二次函數(shù)的解析式;
(2)求函數(shù)圖象的頂點(diǎn)坐標(biāo)及D點(diǎn)的坐標(biāo);
(3)二次函數(shù)的對(duì)稱軸上是否存在一點(diǎn)C,使得△CBD的周長最小?若C點(diǎn)存在,求出C點(diǎn)的坐標(biāo);若C點(diǎn)不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】讀句畫圖并完成計(jì)算:如圖,直線AB與直線CD交于點(diǎn)C ,
(1)過點(diǎn)P作PQ∥CD,交AB于點(diǎn)Q;
(2)過P作PR⊥CD于點(diǎn)R;
(3)若∠DCB=150,求∠PQC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(﹣4,4),點(diǎn)B的坐標(biāo)為(0,2).
(1)求直線AB的解析式;
(2)如圖,以點(diǎn)A為直角頂點(diǎn)作∠CAD=90°,射線AC交x軸于點(diǎn)C,射線AD交y軸于點(diǎn)D.當(dāng)∠CAD繞著點(diǎn)A旋轉(zhuǎn),且點(diǎn)C在x軸的負(fù)半軸上,點(diǎn)D在y軸的負(fù)半軸上時(shí),OC﹣OD的值是否發(fā)生變化?若不變,求出它的值;若變化,求出它的變化范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠BAD=∠CAE=90o,AB=AD,AE=AC, AF⊥CF,垂足為F.
(1)若AC=10,求四邊形ABCD的面積;
(2)求證:AC平分∠ECF;
(3)求證:CE=2AF .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com