【題目】已知關(guān)于x的一元二次方程:x2﹣(m﹣3)x﹣m=0.
(1)試判斷原方程根的情況;
(2)若拋物線y=x2﹣(m﹣3)x﹣m與x軸交于A(x1 , 0),B(x2 , 0)兩點(diǎn),則A,B兩點(diǎn)間的距離是否存在最大或最小值?若存在,求出這個(gè)值;若不存在,請說明理由.(友情提示:AB=|x2﹣x1|)

【答案】
(1)

解:△=[﹣(m﹣3)]2﹣4(﹣m)=m2﹣2m+9=(m﹣1)2+8,

∵(m﹣1)2≥0,

∴△=(m﹣1)2+8>0,

∴原方程有兩個(gè)不等實(shí)數(shù)根


(2)

解:存在,由題意知x1,x2是原方程的兩根,

∴x1+x2=m﹣3,x1x2=﹣m.

∵AB=|x1﹣x2|,

∴AB2=(x1﹣x22=(x1+x22﹣4x1x2

=(m﹣3)2﹣4(﹣m)=(m﹣1)2+8,

∴當(dāng)m=1時(shí),AB2有最小值8,

∴AB有最小值,即AB==


【解析】(1)根據(jù)根的判別式,可得答案;
(2)根據(jù)根與系數(shù)的關(guān)系,可得A、B間的距離,根據(jù)二次函數(shù)的性質(zhì),可得答案.
本題主要考查了二次函數(shù)的綜合應(yīng)用,涉及的知識點(diǎn)有:根的判別式判斷根的情況,根與系數(shù)的關(guān)系。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=ax(a≠0)與y=在同一坐標(biāo)系中的大致圖象是( 。
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某藥品研究所開發(fā)一種抗菌新藥,經(jīng)多年動物實(shí)驗(yàn),首次用于臨床人體試驗(yàn),測得成人服藥后血液中藥物濃度y(微克/毫升)與服藥時(shí)間x小時(shí)之間函數(shù)關(guān)系如圖所示(當(dāng)4≤x≤10時(shí),y與x成反比例).

(1)根據(jù)圖象分別求出血液中藥物濃度上升和下降階段y與x之間的函數(shù)關(guān)系式.
(2)問血液中藥物濃度不低于4微克/毫升的持續(xù)時(shí)間多少小時(shí)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A(4,0),B(0,),把一個(gè)直角三角尺DEF放在△OAB內(nèi),使其斜邊FD在線段AB上,三角尺可沿著線段AB上下滑動.其中∠EFD=30°,ED=2,點(diǎn)G為邊FD的中點(diǎn).

(1)求直線AB的解析式;
(2)如圖1,當(dāng)點(diǎn)D與點(diǎn)A重合時(shí),求經(jīng)過點(diǎn)G的反比例函數(shù)(k≠0)的解析式;
(3)在三角尺滑動的過程中,經(jīng)過點(diǎn)G的反比例函數(shù)的圖象能否同時(shí)經(jīng)過點(diǎn)F?如果能,求出此時(shí)反比例函數(shù)的解析式;如果不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,且OA=OC.則下列結(jié)論:
①abc<0;②>0;③ac﹣b+1=0;④OAOB=﹣
其中正確結(jié)論的個(gè)數(shù)是( 。

A.4
B.3
C.2
D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c的圖象在平面直角坐標(biāo)系中的位置如圖所示,則一次函數(shù)y=ax+b與反比例函數(shù)在同一平面直角坐標(biāo)系中的圖象可能是( 。

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)得到的,連接BE、CF相交于點(diǎn)D.

(1)求證:BE=CF;
(2)當(dāng)四邊形ACDE為菱形時(shí),求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,△ABC是邊長為4cm的等邊三角形,邊AB在射線OM上,且OA=6cm,點(diǎn)D從O點(diǎn)出發(fā),沿OM的方向以1cm/s的速度運(yùn)動,當(dāng)D不與點(diǎn)A重合時(shí),將△ACD繞點(diǎn)C逆時(shí)針方向旋轉(zhuǎn)60°得到△BCE,連結(jié)DE.

(1)求證:△CDE是等邊三角形;
(2)如圖2,當(dāng)6<t<10時(shí),△BDE的周長是否存在最小值?若存在,求出△BDE的最小周長;若不存在,請說明理由;
(3)如圖3,當(dāng)點(diǎn)D在射線OM上運(yùn)動時(shí),是否存在以D、E、B為頂點(diǎn)的三角形是直角三角形?若存在,求出此時(shí)t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AC=BD=6,E、F、G、H分別是AB、BC、CD、DA的中點(diǎn),則EG2+FH2=

查看答案和解析>>

同步練習(xí)冊答案