【題目】為了美化環(huán)境,建設(shè)宜居城市,我市準(zhǔn)備在一個(gè)廣場(chǎng)上種植甲、乙兩種花卉.經(jīng)市場(chǎng)調(diào)查,乙種花卉的種植費(fèi)用y(元)與種植面積x(m2)之間的函數(shù)關(guān)系如圖所示,甲種花卉的種植費(fèi)用為每平方米100元.
(1)直接寫(xiě)出當(dāng)0≤x≤300和x>300時(shí),y與x的函數(shù)關(guān)系式;
(2)花卉種植面積為200m2時(shí),計(jì)算種植甲、乙兩種花卉的費(fèi)用;
(3)廣場(chǎng)上甲、乙兩種花卉的種植面積共1200m2,若乙種花卉的種植面積不少于200m2,且不超過(guò)甲種花卉種植面積的2倍,那么應(yīng)該怎樣分配甲、乙兩種花卉的種植面積才能使種植總費(fèi)用最少?最少總費(fèi)用為多少元?
【答案】(1);(2)甲20000元;乙26000元;(3)甲種花卉種植面積為400m2,乙種花卉種植面積為800m2,119000元
【解析】
(1)由圖可知y與x的函數(shù)關(guān)系式是分段函數(shù),待定系數(shù)法求解析式即可;
(2)把數(shù)值代入(1)的結(jié)論即可解答;
(3)設(shè)乙種花卉種植為 am2,則甲種花卉種植(1200﹣a)m2,根據(jù)實(shí)際意義可以確定a的范圍,結(jié)合種植費(fèi)用y(元)與種植面積x(m2)之間的函數(shù)關(guān)系可以分類(lèi)討論最少費(fèi)用為多少.
(1)當(dāng)0≤x≤300時(shí),設(shè)y=k1x,根據(jù)題意得:
300k1=39000,解得k1=130,即y=130x;
當(dāng)x>300時(shí),設(shè)y=k2x+b,根據(jù)題意得:
,解得 ,即y=80x+15000,
∴y= ;
(2)種植甲種花卉的費(fèi)用為:200×100=20000元;種植乙種花卉的費(fèi)用為200×130=26000元;
(3)設(shè)總費(fèi)用為W,乙種花卉種植面積為am2,則甲種花卉種植面積為(1200﹣a)m2;依題意得:200≤a≤2(1200﹣a),即200≤a≤800,
當(dāng)200≤a≤300時(shí),
W=130a+100(1200﹣a)=30a+120000;
故當(dāng)x=200時(shí),Wmin=126000,
當(dāng)300<a≤800時(shí),
W=80a+15000+100(1200﹣a)=﹣20a+135000;
故當(dāng)a=800時(shí),Wmin=119000.
∵119000<126000,∴當(dāng)a=800時(shí)總費(fèi)用最少;
答:當(dāng)甲種花卉種植面積為400m2,乙種花卉種植面積為800m2時(shí),種植總費(fèi)用最少,最少總費(fèi)用為119000元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若一組數(shù)據(jù)a1,a2,a3的平均數(shù)為4,方差為3,那么數(shù)據(jù)a1+2,a2+2,a3+2的平均數(shù)和方差分別是( 。
A. 4,3B. 6,3C. 3,4D. 6,5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形OABC是矩形,等腰△ODE中,OE=DE,點(diǎn)A、D在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,點(diǎn)B、E在反比例函數(shù)y=的圖象上,OA=5,OC=1,則△ODE的面積為( 。
A.2.5B.5C.7.5D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2013年四川南充3分)如圖,把矩形ABCD沿EF翻折,點(diǎn)B恰好落在AD邊的B′處,若AE=2,DE=6,∠EFB=60°,則矩形ABCD的面積是【 】
A.12 B. 24 C. 12 D. 16
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線(xiàn)y=x2+bx+c與x軸交于A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)左側(cè)),與y軸交于點(diǎn)C(0,-3),對(duì)稱(chēng)軸是直線(xiàn)x=1,直線(xiàn)BC與拋物線(xiàn)的對(duì)稱(chēng)軸交于點(diǎn)D.
(1)求拋物線(xiàn)的函數(shù)表達(dá)式;
(2)求直線(xiàn)BC的函數(shù)表達(dá)式;
(3)點(diǎn)E為y軸上一動(dòng)點(diǎn),CE的垂直平分線(xiàn)交CE于點(diǎn)F,交拋物線(xiàn)于P、Q兩點(diǎn),且點(diǎn)P在第三象限.
①當(dāng)線(xiàn)段PQ=AB時(shí),求tan∠CED的值;
②當(dāng)以點(diǎn)C、D、E為頂點(diǎn)的三角形是直角三角形時(shí),請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD的對(duì)角線(xiàn)AC、BD相交于點(diǎn)O,AE平分∠BAD,分別交BC、BD于點(diǎn)E、P,連接OE,∠ADC=60°,AB=BC=1,則下列結(jié)論:
①∠CAD=30°②BD=③S平行四邊形ABCD=ABAC④OE=AD⑤S△APO=,正確的個(gè)數(shù)是( )
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,經(jīng)過(guò)正方形ABCD的頂點(diǎn)A在其外側(cè)作直線(xiàn)AP,點(diǎn)B關(guān)于直線(xiàn)AP的對(duì)稱(chēng)點(diǎn)為E,連接BE、DE,其中DE交直線(xiàn)AP于點(diǎn)F.
(1)依題意補(bǔ)全圖1.
(2)若∠PAB=30°,求∠ADF的度數(shù).
(3)如圖,若45°<∠PAB<90°,用等式表示線(xiàn)段AB,FE,FD之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,CD是弦,AB⊥CD,垂足為E,點(diǎn)P在⊙O上,連接BP、PD、BC.若CD=,sinP=,則⊙O的直徑為( 。
A. 8 B. 6 C. 5 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“校園安全”受到全社會(huì)的廣泛關(guān)注,東營(yíng)市某中學(xué)對(duì)部分學(xué)生就校園安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問(wèn)題:
(1)接受問(wèn)卷調(diào)查的學(xué)生共有_______人,扇形統(tǒng)計(jì)圖中“基本了解”部分所對(duì)應(yīng)扇形的圓心角為_(kāi)______°;
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該中學(xué)共有學(xué)生900人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對(duì)校園安全知識(shí)達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù);
(4)若從對(duì)校園安全知識(shí)達(dá)到“了解”程度的3個(gè)女生和2個(gè)男生中隨機(jī)抽取2人參加校園安全知識(shí)競(jìng)賽,請(qǐng)用樹(shù)狀圖或列表法求出恰好抽到1個(gè)男生和1個(gè)女生的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com