如圖,在直角坐標(biāo)系中,正方形A1B1C1O、 A2B2C2C1、A3B3C3C2、…、AnBnCnCn-1的頂點A1、A2、A3、…、An均在直線y=kx+b上,頂點C1、C2、C3、…、Cn在x軸上,若點B1的坐標(biāo)為(1,1),點B2的坐標(biāo)為(3,2),那么點A4的坐標(biāo)為 ,點An的坐標(biāo)為 .
A4(7,8);An(2n-1-1,2n-1).
解析試題分析:先求得直線的解析式,分別求得A1,A2,A3…的坐標(biāo),可以得到一定的規(guī)律,據(jù)此即可求解.
試題解析:∵B1的坐標(biāo)為(1,1),點B2的坐標(biāo)為(3,2),
∴正方形A1B1C1O1邊長為1,正方形A2B2C2C1邊長為2,
∴A1的坐標(biāo)是(0,1),A2的坐標(biāo)是:(1,2),
代入y=kx+b得
解得:
則直線的解析式是:y=x+1.
∵A1B1=1,點B2的坐標(biāo)為(3,2),
∴A1的縱坐標(biāo)是:1=20,A1的橫坐標(biāo)是:0=20-1,
∴A2的縱坐標(biāo)是:1+1=21,A2的橫坐標(biāo)是:1=21-1,
∴A3的縱坐標(biāo)是:2+2=4=22,A3的橫坐標(biāo)是:1+2=3=22-1,
∴A4的縱坐標(biāo)是:4+4=8=23,A4的橫坐標(biāo)是:1+2+4=7=23-1,
即A4(7,8)
據(jù)此可以得到An的縱坐標(biāo)是:2n-1,橫坐標(biāo)是:2n-1-1.
故點An的坐標(biāo)為 (2n-1-1,2n-1).
考點:1.一次函數(shù)綜合題;2.點的坐標(biāo);3.正方形的性質(zhì).
科目:初中數(shù)學(xué) 來源:新人教版(2012) 七年級上 題型:
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:單選題
如圖,直線y=kx+b交坐標(biāo)軸于A(﹣2,0),B(0,3)兩點,則不等式kx+b>0的解集是
A.x>3 | B.﹣2<x<3 | C.x<﹣2 | D.x>﹣2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
如圖①,在正方形ABCD中,點P沿邊DA從點D開始向點A以1cm/s的速度移動;同時,點Q沿邊AB、BC從點A開始向點C以2cm/s的速度移動.當(dāng)點P移動到點A時,P、Q同時停止移動.設(shè)點P出發(fā)xs時,△PAQ的面積為ycm2,y與x的函數(shù)圖象如圖②,則線段EF所在的直線對應(yīng)的函數(shù)關(guān)系式為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
如圖,在平面直角坐標(biāo)系中,已知點A(2,3),點B(﹣2,1),在x軸上存在點P到A,B兩點的距離之和最小,則P點的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
新定義:[a,b,c]為函數(shù)y= (a,b,c為實數(shù))的“關(guān)聯(lián)數(shù)”.若“關(guān)聯(lián)數(shù)”為 [m-2,m,1]的函數(shù)為一次函數(shù),則m的值為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com