【題目】在平面直角坐標(biāo)系xOy中,已知△ABC和△DEF的頂點坐標(biāo)分別為A(1,0)、B(3,0)、C(2,1)、D(4,3)、E(6,5)、F(4,7).
按下列要求畫圖:以O(shè)為位似中心,將△ABC向y軸左側(cè)按比例尺2:1放大得△ABC的位似圖形△A1B1C1 , 并解決下列問題:
(1)頂點A1的坐標(biāo)為 , B1的坐標(biāo)為 , C1的坐標(biāo)為;
(2)請你利用旋轉(zhuǎn)、平移兩種變換,使△A1B1C1通過變換后得到△A2B2C2 , 且△A2B2C2恰與△DEF拼接成一個平行四邊形(非正方形),寫出符合要求的變換過程.

【答案】
(1)(﹣2,0);(﹣6,0);(﹣4,﹣2)
(2)

解:如圖,把△A1B1C1繞點O順時針旋轉(zhuǎn)90°,再向右平移6個單位,向下平移1個單位,使B2C2與DE重合,

或者:把△A1B1C1繞點O順時針旋轉(zhuǎn)90°,再向右平移6個單位,向上平移3個單位,使A2C2與EF重合,都可以拼成一個平行四邊形.


【解析】解:(1)如圖所示,△A1B1C1即為所求作的三角形,
A1(﹣2,0)B1(﹣6,0)C1(﹣4,﹣2);
【考點精析】解答此題的關(guān)鍵在于理解旋轉(zhuǎn)的性質(zhì)的相關(guān)知識,掌握①旋轉(zhuǎn)后對應(yīng)的線段長短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對應(yīng)的點到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知第一象限內(nèi)的圖象是反比例函數(shù)y= 圖象的一個分支,第二象限內(nèi)的圖象是反比例函數(shù)y=﹣ 圖象的一個分支,在x軸的上方有一條平行于x軸的直線l與它們分別交于點A、B,過點A、B作x軸的垂線,垂足分別為C、D.若四邊形ABCD的周長為8且AB<AC,則點A的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓周角∠BAC=55°,分別過B,C兩點作⊙O的切線,兩切線相交于點P,則∠BPC=°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠C=90°,點D在AC上,已知∠BDC=45°,BD=10 ,AB=20.求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知反比例函數(shù)y= (k1>0),y= (k2<0).點A在y軸的正半軸上,過點A作直線BC∥x軸,且分別與兩個反比例函數(shù)的圖象交于點B和C,連接OC、OB.若△BOC的面積為 ,AC:AB=2:3,則k1= , k2=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點D在△ABC的邊AC上,要判定△ADB與△ABC相似,添加一個條件,不正確的是(
A.∠ABD=∠C
B.∠ADB=∠ABC
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,頂點為P(4,﹣4)的二次函數(shù)圖象經(jīng)過原點(0,0),點A在該圖象上,OA交其對稱軸l于點M,點M、N關(guān)于點P對稱,連接AN、ON,

(1)求該二次函數(shù)的關(guān)系式;
(2)若點A的坐標(biāo)是(6,﹣3),求△ANO的面積;
(3)若點A在對稱軸l右側(cè)的二次函數(shù)圖象上運動時,請解答下面問題:
①證明:∠ANM=∠ONM;
②△ANO能否為直角三角形?如果能,請求出所有符合條件的點A的坐標(biāo);如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC的三個頂點的坐標(biāo)分別為A(﹣6,0)、B(﹣2,3)、
C(﹣1,0).

(1)請直接寫出與點B關(guān)于坐標(biāo)原點O的對稱點B1的坐標(biāo);
(2)將△ABC繞坐標(biāo)原點O逆時針旋轉(zhuǎn)90°.畫出對應(yīng)的△A′B′C′圖形,直接寫出點A的對應(yīng)點A′的坐標(biāo);
(3)若四邊形A′B′C′D′為平行四邊形,請直接寫出第四個頂點D′的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為加強中小學(xué)生安全和禁毒教育,某校組織了“防溺水、交通安全、禁毒”知識競賽,為獎勵在競賽中表現(xiàn)優(yōu)異的班級,學(xué)校準(zhǔn)備從體育用品商場一次性購買若干個足球和籃球(每個足球的價格相同,每個籃球的價格相同),購買1個足球和1個籃球共需159元;足球單價是籃球單價的2倍少9元.
(1)求足球和籃球的單價各是多少元?
(2)根據(jù)學(xué)校實際情況,需一次性購買足球和籃球共20個,但要求購買足球和籃球的總費用不超過1550元,學(xué)校最多可以購買多少個足球?

查看答案和解析>>

同步練習(xí)冊答案