如圖1,△ABC中,CA=CB,點(diǎn)O在高CH上,OD⊥CA于點(diǎn)D,OE⊥CB于點(diǎn)E,以O(shè)為圓心,OD為半徑作⊙O.
(1)求證:⊙O與CB相切于點(diǎn)E;
(2)如圖2,若⊙O過(guò)點(diǎn)H,且AC=5,AB=6,連接EH,求△BHE的面積和tan∠BHE的值.
(1)由CA=CB,且CH垂直于AB,利用三線合一得到CH為角平分線,再由OD垂直于AC,OE垂直于CB,利用角平分線定理得到OE=OD,利用切線的判定方法即可得證。
(2)
【解析】
分析:(1)由CA=CB,且CH垂直于AB,利用三線合一得到CH為角平分線,再由OD垂直于AC,OE垂直于CB,利用角平分線定理得到OE=OD,利用切線的判定方法即可得證。
(2)由CA=CB,CH為高,利用三線合一得到AH=BH,在直角三角形ACH中,利用勾股定理求出CH的長(zhǎng),由⊙O過(guò)H,CH垂直于AB,得到⊙O與AB相切,由(1)得到⊙O與CB相切,利用切線長(zhǎng)定理得到BE=BH,如圖所示,過(guò)E作EF垂直于AB,得到EF與CH平行,得出△BEF∽△BCH,由相似得比例,求出EF的長(zhǎng),由BH與EF的長(zhǎng),利用三角形面積公式即可求出△BEH的面積;根據(jù)EF與BE的長(zhǎng),利用勾股定理求出FB的長(zhǎng),由BH﹣BF求出HF的長(zhǎng),利用銳角三角形函數(shù)定義即可求出tan∠BHE的值。
解:(1)證明:∵CA=CB,點(diǎn)O在高CH上,∴∠ACH=∠BCH。
∵OD⊥CA,OE⊥CB,∴OE=OD。
又∵OD為⊙O的半徑,∴⊙O與CB相切于點(diǎn)E。
(2)∵CA=CB,CH是高,∴AH=BH=AB=3。
∴,
∵點(diǎn)O在高CH上,⊙O過(guò)點(diǎn)H,∴圓O與AB相切于H點(diǎn)。
由(1)得⊙O與CB相切于點(diǎn)E,∴BE=BH=3。
如圖,過(guò)E作EF⊥AB,則EF∥CH,∴△BEF∽△BCH。
∴,即,解得:。
∴。
在Rt△BEF中,,∴。
∴。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
A、35° | B、45° | C、55° | D、65° |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com