【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為-6,點(diǎn)B在數(shù)軸上A點(diǎn)右側(cè),則AB=14,動(dòng)點(diǎn)M從點(diǎn)A出發(fā),以每秒5個(gè)單位長度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(t>O)秒.

(1)寫出數(shù)軸上點(diǎn)B表示的數(shù) , 點(diǎn)M表示的數(shù) (用含t的式子表示).
(2)動(dòng)點(diǎn)N從點(diǎn)B出發(fā),以每秒3個(gè)單位長度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),若點(diǎn)M,N同時(shí)出發(fā),問點(diǎn)M運(yùn)動(dòng)多少秒時(shí)追上點(diǎn)N?
(3)若P為AM的中點(diǎn),F(xiàn)為MB的中點(diǎn),點(diǎn)M在運(yùn)動(dòng)過程中,線段_PF的長度是否發(fā)生變化?若變化,請(qǐng)說明理由;若不變,請(qǐng)求出線段PF的長.

【答案】
(1)8;-6+5t
(2)解: ,

,
答:點(diǎn)M運(yùn)動(dòng)7秒時(shí)追上點(diǎn)N
(3)解:點(diǎn)M在運(yùn)動(dòng)過程中,線段PF的長度不發(fā)生變化.
①當(dāng)點(diǎn)MAB上時(shí),如下圖所示:

= = ;
②當(dāng)點(diǎn)MAB延長線上時(shí),如下圖所示:

= =
【解析】解:(1)由題意可知AB=14,OA=6,OB=AB-OA=14-6=8,所以點(diǎn)B表示的數(shù)為8.根據(jù)題意可得M表示為-6+5t。(1)A表示的數(shù)為-6,點(diǎn)B在數(shù)軸上A點(diǎn)右側(cè),則AB=14 ,故根據(jù)線段的和差得出點(diǎn)B表示的數(shù)是8;動(dòng)點(diǎn)M從點(diǎn)A出發(fā),以每秒5個(gè)單位長度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(t>O)秒,則M表示為-6+5t;
(2)此題其實(shí)是一道追擊問題,根據(jù)點(diǎn)M,N同時(shí)出發(fā),點(diǎn)M追上點(diǎn)N時(shí),則點(diǎn)M運(yùn)動(dòng)的路程為5t,N點(diǎn)運(yùn)動(dòng)的路程為3t,根據(jù)點(diǎn)M運(yùn)動(dòng)的路程-點(diǎn)N運(yùn)動(dòng)的路程=它們之間的距離,列出方程,求解得出答案;
(3)點(diǎn)M在運(yùn)動(dòng)過程中,線段PF的長度不發(fā)生變化.此題分兩種情況:①當(dāng)點(diǎn)MAB上時(shí),根據(jù)線段的中點(diǎn)定義及線段的和差得出P F = P M + F M = A M + B M = ( A M + B M ) = A B;②當(dāng)點(diǎn)MAB延長線上時(shí),根據(jù)線段的中點(diǎn)定義及線段的和差得出P F = P M F M = A M B M = ( A M B M ) = A B;從而得出答案。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知2x+y=1,代數(shù)式(y+1)2-(y2-4x)的值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果|a|>a , 那么a是(
A.正數(shù)
B.負(fù)數(shù)
C.零
D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)軸上表示﹣4的點(diǎn)到原點(diǎn)的距離是( )

A. 4 B. 4 C. ±4 D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題:如圖(1),在RtACB中,ACB=90°,AC=CB,DCE=45°,試探究AD、DE、EB滿足的等量關(guān)系.

[探究發(fā)現(xiàn)]

小聰同學(xué)利用圖形變換,將CAD繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°得到CBH,連接EH,由已知條件易得EBH=90°,ECH=ECB+BCH=ECB+ACD=45°根據(jù)“邊角邊”,可證△CEH≌ ,得EH=ED.

在Rt△HBE中,由 定理,可得BH2+EB2=EH2,由BH=AD,可得AD、DE、EB之間的等量關(guān)系是

[實(shí)踐運(yùn)用]

(1)如圖(2),在正方形ABCD中,AEF的頂點(diǎn)E、F分別在BC、CD邊上,高AG與正方形的邊長相等,求EAF的度數(shù);

(2)在(1)條件下,連接BD,分別交AE、AF于點(diǎn)M、N,若BE=2,DF=3,BM=2,運(yùn)用小聰同學(xué)探究的結(jié)論,求正方形的邊長及MN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知線段ABCD的公共部分BD= AB= CD , 線段AB、CD的中點(diǎn)EF之間距離是10cm , 求ABCD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某學(xué)校全體教職工年齡的頻數(shù)分布直方圖(每組年齡包含最小值,不包含最大值),根據(jù)圖形提供的信息,下列說法中錯(cuò)誤的是(
A.該學(xué)校教職工總?cè)藬?shù)是50人
B.這一組年齡在40≤x<42小組的教職工人數(shù)占該學(xué)校全體教職工總?cè)藬?shù)的20%
C.教職工年齡的中位數(shù)一定落在40≤x<42這一組
D.教職工年齡的眾數(shù)一定在38≤x<40這一組

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了節(jié)約水資源,某市準(zhǔn)備按照居民家庭年用水量實(shí)行階梯水價(jià).水價(jià)分檔遞增,計(jì)劃使第一檔、第二檔和第三檔的水價(jià)分別覆蓋全市居民家庭的80%,15%和5%,為合理確定各檔之間的界限,隨機(jī)抽查了該市5萬戶居民家庭上一年的年用水量(單位:m3),繪制了統(tǒng)計(jì)圖.如圖所示,下面四個(gè)推斷( 。
①年用水量不超過180m3的該市居民家庭按第一檔水價(jià)交費(fèi);
②年用水量超過240m3的該市居民家庭按第三檔水價(jià)交費(fèi);
③該市居民家庭年用水量的中位數(shù)在150﹣180之間;
④該市居民家庭年用水量的平均數(shù)不超過180.

A.①③
B.①④
C.②③
D.②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三角形的下列四種線段中一定能將三角形分成面積相等的兩部分的是( )
A.角平分線
B.中位線
C.高
D.中線

查看答案和解析>>

同步練習(xí)冊(cè)答案