【題目】如圖,已知線(xiàn)段 AC=4,線(xiàn)段BC繞點(diǎn)C旋轉(zhuǎn),且BC=6,連結(jié)AB,以AB為邊作正方形ADEB,連結(jié)CD.
(1)若∠ACB=90°,則AB的值是____;
(2)線(xiàn)段CD長(zhǎng)的最大值是____.
【答案】 6+
【解析】
(1)直接根據(jù)勾股定理求解即可;
(2)過(guò)點(diǎn)A作AE⊥AC,取AC=AE,連結(jié)BE.,先在等腰直角△ACE中求得CE的長(zhǎng),然后依據(jù)三角形的三邊關(guān)系可求得BE的取值范圍,最后依據(jù)SAS證明△CAD≌△EAB,由全等三角形的性質(zhì)得到CD=BE,故此可求得CD的最大值.
(1)∵AC=4, BC=6, ∠ACB=90°,
∴AB=;
(2)如圖所示:過(guò)點(diǎn)A作AE⊥AC,取AC=AE,連結(jié)BE.
∵AC=AE=4,∠CAE=90°,
∴CE=4.
∵CE=4,BC=6,
∴6-4<BE<6+4,
∴當(dāng)B、C、E共線(xiàn)時(shí),BE取得最大值6+4.
∵∠DAB=∠CAE=90°,
∴∠DAB+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB.
在△CAD和△EAB中
∵AC=AE,
∠CAD=∠EAB,
AD=AB,
∴△CAD≌△EAB,
∴CD=BE.
∴線(xiàn)段CD長(zhǎng)的最大值是6+4.
故答案為:(1);(2)6+4
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某農(nóng)科所對(duì)甲、乙兩種小麥各選用10塊面積相同的試驗(yàn)田進(jìn)行種植試驗(yàn),它們的平均畝產(chǎn)量分別是=610千克, =609千克,畝產(chǎn)量的方差分別是=29.6, =2.則關(guān)于兩種小麥推廣種植的合理決策是( )
A. 甲的平均畝產(chǎn)量較高,應(yīng)推廣甲
B. 甲、乙的平均畝產(chǎn)量相差不多,均可推廣
C. 甲的平均畝產(chǎn)量較高,且畝產(chǎn)量比較穩(wěn)定,應(yīng)推廣甲
D. 甲、乙的平均畝產(chǎn)量相差不多,但乙的畝產(chǎn)量比較穩(wěn)定,應(yīng)推廣乙
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知梯形ABCD,AD∥BC,AB⊥BC,AD=1,AB=3,BC=4.若P為線(xiàn)段AB上任意一點(diǎn),延長(zhǎng)PD到E,使DE=2PD,再以PE、PC為邊作平行四邊形PCQE,求對(duì)角線(xiàn)PQ的最小值為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某區(qū)教育局為了解今年九年級(jí)學(xué)生體育測(cè)試情況,隨機(jī)抽查了某班學(xué)生的體育測(cè)試成績(jī)?yōu)闃颖,?/span>A、B、C、D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制成如下的統(tǒng)計(jì)圖,請(qǐng)你結(jié)合圖中所給信息解答下列問(wèn)題:
說(shuō)明:A級(jí):90分~100分;B級(jí):75分~89分;C級(jí):60分~74分;D級(jí):60分以下
(1)樣本中D級(jí)的學(xué)生人數(shù)占全班學(xué)生人數(shù)的百分比是 ;
(2)扇形統(tǒng)計(jì)圖中A級(jí)所在的扇形的圓心角度數(shù)是 ;
(3)請(qǐng)把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(4)若該校九年級(jí)有500名學(xué)生,請(qǐng)你用此樣本估計(jì)體育測(cè)試中A級(jí)和B級(jí)的學(xué)生人數(shù)之和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小麗和小華想利用摸球游戲決定誰(shuí)去參加市里舉辦的書(shū)法比賽,游戲規(guī)則是:在一個(gè)不透明的袋子里裝有除數(shù)字外完全相同的4個(gè)小球,上面分別標(biāo)有數(shù)字2,3,4,5.一人先從袋中隨機(jī)摸出一個(gè)小球,另一人再?gòu)拇惺O碌?個(gè)小球中隨機(jī)摸出一個(gè)小球.若摸出的兩個(gè)小球上的數(shù)字和為偶數(shù),則小麗去參賽;否則小華去參賽.
(1)用列表法或畫(huà)樹(shù)狀圖法,求小麗參賽的概率.
(2)你認(rèn)為這個(gè)游戲公平嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明在學(xué)習(xí)反比例函數(shù)后,為研究新函數(shù),先將函數(shù)變形為,畫(huà)圖發(fā)現(xiàn)函數(shù)的圖象可以由函數(shù)的圖象向上平移1個(gè)單位得到.
(1)根據(jù)小明的發(fā)現(xiàn),請(qǐng)你寫(xiě)出函數(shù)的圖象可以由反比例函數(shù)的圖象經(jīng)過(guò)怎樣的平移得到;
(2)在平面直角坐標(biāo)系中,已知反比例函數(shù)(x>0)的圖象如圖所示,請(qǐng)?jiān)诖俗鴺?biāo)系中畫(huà)出函數(shù)(x>0)的圖象;
(3)若直線(xiàn)y=-x+b與函數(shù)(x>0)的圖象沒(méi)有交點(diǎn),求b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,若點(diǎn) A 在數(shù)軸上對(duì)應(yīng)的數(shù)為 a,點(diǎn)B在數(shù)軸上對(duì)應(yīng)的數(shù)為 b,且 a, b 滿(mǎn)足|a+1|+(b-11)=0, 若 P 是線(xiàn)段 AB 上任意一點(diǎn),C、D 兩點(diǎn)分別從點(diǎn)P、B 開(kāi)始出發(fā),同時(shí)向點(diǎn)A運(yùn)動(dòng),如果點(diǎn) C 的運(yùn)動(dòng)速度為2 cm/s,點(diǎn) D 的運(yùn)動(dòng)速度為 3 cm/s,運(yùn)動(dòng)的時(shí)間為t s .
(1)求線(xiàn)段 AB 的長(zhǎng);
(2)若 AP=8cm,
①當(dāng) C、D 兩點(diǎn)運(yùn)動(dòng) 1 s 后,求線(xiàn)段 CD 的長(zhǎng);
②當(dāng) C、D 兩點(diǎn)運(yùn)動(dòng) t s 后,且點(diǎn) D 在線(xiàn)段 PB 上時(shí),用含t 的代數(shù)式表示線(xiàn)段 AC、CD 的長(zhǎng),并說(shuō)明AC 與 CD 的數(shù)量關(guān)系.
(3)如果 t=2 s,CD=1 cm,試探索線(xiàn)段 AP 的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)E是邊AC上一點(diǎn),線(xiàn)段BE垂直于∠BAC的平分線(xiàn)于點(diǎn)D,點(diǎn)M為邊BC的中點(diǎn),連接DM.
(1)求證: DM=CE;
(2)若AD=6,BD=8,DM=2,求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為緩解油價(jià)上漲給出租車(chē)行業(yè)帶來(lái)的成本壓力,某市擬調(diào)整出租車(chē)運(yùn)價(jià),調(diào)整方案見(jiàn)下列表格及圖象(其中為常數(shù))
行駛路程 | 收費(fèi)標(biāo)準(zhǔn) | |
調(diào)價(jià)前 | 調(diào)價(jià)后 | |
不超過(guò)的部分 | 起步價(jià)7元 | 起步價(jià)元 |
超過(guò)不超出的部分 | 每公里2元 | 每公里元 |
超出的部分 | 每公里元 |
設(shè)行駛路程為,調(diào)價(jià)前的運(yùn)價(jià)(元),調(diào)價(jià)后運(yùn)價(jià)(元),如圖,折線(xiàn)表示與之間的函數(shù)關(guān)系式,線(xiàn)段表示當(dāng)時(shí),與的函數(shù)關(guān)系式,根據(jù)圖表信息,完成下列各題:
①填空: , , ;
②當(dāng)時(shí),求與的關(guān)系,補(bǔ)充圖中該函數(shù)的圖像;
③函數(shù)與的圖象是否存在交點(diǎn)?若存在,求出交點(diǎn)的坐標(biāo),并說(shuō)明該點(diǎn)的實(shí)際意義;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com