【題目】如圖,為了測量矗立在高速公路水平地面上的交通警示牌的高度CD,在距M相距4米的A處,測得警示牌下端D的仰角為45°,再筆直往前走8米到達B處,在B處測得警示牌上端C的仰角為30°,求警示牌的高度CD.(結(jié)果精確到0.1米,參考數(shù)據(jù):,

【答案】警示牌的高度CD約為2.9米.

【解析】試題分析:先在RtADM,根據(jù)AM=4,MAD=45°求出DM=4;在RtBCM中,根據(jù)∠MBC=30°,BM=12求出CM的值,再根據(jù)CD=MC-DM計算即可;

試題解析:

RtADM中,

AM=4,MAD=45°,

DM =AM =4,

AB=8,

MB=AM+AB=12,

RtBCM中,

∵∠MBC=30°,

MC=MBtan30°=

DC= MC - DM =(米),

答:警示牌的高度CD約為2.9米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,∠A=36°,AB的中垂線DE交AC于D,交AB于E,下述結(jié)論:(1)BD平分∠ABC;(2)AD=BD=BC;(3)△BDC的周長等于AB+BC;(4)D是AC中點.其中正確的命題序號是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】生物科技發(fā)展公司投資2000萬元,研制出一種綠色保健食品.已知該產(chǎn)品的成本為40元/件,試銷時,售價不低于成本價,又不高于180元/件.經(jīng)市場調(diào)查知,年銷售量y(萬件)與銷售單價 (元/件)的關(guān)系滿足下表所示的規(guī)律.

(1)y之間的函數(shù)關(guān)系式是____________,自變量的取值范圍為__________

(2)經(jīng)測算:年銷售量不低于90萬件時,每件產(chǎn)品成本降低2元,設(shè)銷售該產(chǎn)品年獲利潤為 (萬元)( 年銷售額一成本一投資),求出年銷售量低于90萬件和不低于90萬件時, 之間的函數(shù)關(guān)系式;

(3)在(2)的條件下,當(dāng)銷售單價定為多少時,公司銷售這種產(chǎn)品年獲利潤最大?最大利潤為多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠C=90°AC=BC=4cm,MAB的中點,點PQ分別從A、C兩點同時出發(fā),以1cm/s的速度沿AC、CB方向均速運動,到點CB時停止運動,設(shè)運動時間為,PMQ的面積為S (cm2),則S (cm2)的函數(shù)關(guān)系可用圖象表示為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】去年入秋以來,某省發(fā)生了百年一遇的旱災(zāi),連續(xù)8個多月無有效降水,為抗旱救災(zāi),某部隊計劃為駐地村民新修水渠3600米,為了水渠能盡快投入使用,實際工作效率是原計劃工作效率的1.8倍,結(jié)果提前20天完成修水渠任務(wù).問原計劃每天修水渠多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點A(1,3)和B(-3, ).

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)點C是平面直角坐標(biāo)系內(nèi)一點,BC軸,ADBC于點D,連結(jié)AC,若,求點C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面各組數(shù)中,相等的一組是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB、CD相交于點O,∠BOC=80°,OE是∠BOC的角平分線,OF是OE的反向延長線.

(1)求∠2、∠3的度數(shù);
(2)說明OF平分∠AOD的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為深化義務(wù)教育課程改革,滿足學(xué)生的個性化學(xué)習(xí)需求,某校就“學(xué)生對知識拓展,體育特長、藝術(shù)特長和實踐活動四類選課意向”進行了抽樣調(diào)查(每人選報一類),繪制了如圖所示的兩幅統(tǒng)計圖(不完整),請根據(jù)圖中信息,解答下列問題:

1扇形統(tǒng)計圖中m的值為   n的值為   ;

2補全條形統(tǒng)計圖;

3在選擇B類的學(xué)生中,甲、乙、丙三人在乒乓球項目表現(xiàn)突出,現(xiàn)決定從這三名同學(xué)中任選兩名參加市里組織的乒乓球比賽,選中甲同學(xué)的概率是   

查看答案和解析>>

同步練習(xí)冊答案