【題目】如圖,點D是△ABC的邊BC上任意一點,點E、F分別是線段AD、CE的中點,且△ABC的面積為16cm2 , 則△BEF的面積:cm2 .
【答案】4
【解析】解:∵AE=DE,
∴S△BDE=S△ABE , S△CDE=S△ACE ,
∴S△BDE= S△ABD , S△CDE= S△ACD ,
∴S△BCE= S△ABC= =8(cm2);
∵EF=CF,
∴SBEF=S△BCF ,
∴S△BEF= S△BCE= =4(cm2),
即△BEF的面積是4cm2 .
故答案為:4.
首先根據(jù)點E是線段AD的中點,三角形的中線將三角形分成面積相等的兩部分,可得△BDE的面積等于三角形△ABE的面積,△CDE的面積△等于三角形ACE的面積,所以△BCE的面積等于△ABC的面積的一半;然后根據(jù)點F是線段CE的中點,可得△BEF的面積等于△BCE的面積的一半,據(jù)此用△BCE的面積除以2,求出△BEF的面積是多少即可.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD是正方形,對角線AC,BD相交于點O.
(1)如圖1,點P是正方形ABCD外一點,連接OP,以O(shè)P為一邊,作正方形OPMN,且邊ON與邊BC相交,連接AP,BN.
①依題意補全圖1;
②判斷AP與BN的數(shù)量關(guān)系及位置關(guān)系,寫出結(jié)論并加以證明;
(2)點P在AB延長線上,且∠APO=30°,連接OP,以O(shè)P為一邊,作正方形OPMN,且邊ON與BC的延長線恰交于點N,連接CM,若AB=2,求CM的長(不必寫出計算結(jié)果,簡述求CM長的過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于二次函數(shù)y=﹣x2,下列說法不正確的是( 。
A.開口向下B.對稱軸為y軸C.頂點坐標(biāo)是(0,0)D.y隨x增大而減小
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和爸爸從家步行去公園,爸爸先出發(fā)一直勻速前行,小明后出發(fā).家到公園的距離為2500m,如圖是小明和爸爸所走的路程s(m)與步行時間t(min)的函數(shù)圖象.
(1)直接寫出小明所走路程s與時間t的函數(shù)關(guān)系式;
(2)小明出發(fā)多少時間與爸爸第三次相遇?
(3)在速度都不變的情況下,小明希望比爸爸早20min到達(dá)公園,則小明在步行過程中停留的時間需作怎樣的調(diào)整?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)店嘗試用單價隨天數(shù)而變化的銷售模式銷售一種商品,利用30天的時間銷售一種成本為10元/件的商品售后,經(jīng)過統(tǒng)計得到此商品單價在第x天(x為正整數(shù))銷售的相關(guān)信息,如表所示:
銷售量n(件) | n=50﹣x |
銷售單價m(元/件) | 當(dāng)1≤x≤20時,m=20+x |
當(dāng)21≤x≤30時,m=10+ |
(1)請計算第幾天該商品單價為25元/件?
(2)求網(wǎng)店銷售該商品30天里所獲利潤y(元)關(guān)于x(天)的函數(shù)關(guān)系式;
(3)這30天中第幾天獲得的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九年級學(xué)生在畢業(yè)前夕,某班每名同學(xué)都為其他同學(xué)寫一段畢業(yè)感言,全班共寫了2256段畢業(yè)感言,如果該班有x名同學(xué),根據(jù)題意列出方程為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】海靜中學(xué)開展以“我最喜愛的職業(yè)”為主題的調(diào)查活動,圍繞“在演員、教師、醫(yī)生、律師、公務(wù)員共五類職業(yè)中,你最喜愛哪一類?(必選且只選一類)”的問題,在全校范圍內(nèi)隨機抽取部分學(xué)生進行問卷調(diào)查,將調(diào)查結(jié)果整理后繪制成如圖所示的不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息回答下列問題:
(1)本次調(diào)查共抽取了多少名學(xué)生?
(2)求在被調(diào)查的學(xué)生中,最喜愛教師職業(yè)的人數(shù),并補全條形統(tǒng)計圖;
(3)若海靜中學(xué)共有1500名學(xué)生,請你估計該中學(xué)最喜愛律師職業(yè)的學(xué)生有多少名?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com