1.如圖,射線OA的方向是北偏東20°,射線OB的方向是北偏西40°,OD是OB的反向延長線.若OC是∠AOD的平分線,則∠BOC=120°,射線OC的方向是北偏東80°.

分析 先求出∠AOB=60°,再求得∠AOD的度數(shù),由角平分線得出∠AOC的度數(shù),得出∠BOC的度數(shù),即可確定OC的方向.

解答 解:∵OB的方向是北偏西40°,OA的方向是北偏東20°,
∴∠AOB=40°+20°=60°,
∴∠AOD=180°-60°=120°,
∵OC是∠AOD的平分線,
∴∠AOC=60°,
∴∠BOC=60°+60°=120°;
∵20°+60°=80°,
∴射線OC的方向是北偏東80°;
故答案為:120,北偏東80°.

點評 此題主要考查了方向角的表達即方向角一般是指以觀測者的位置為中心,將正北或正南方向作為起始方向旋轉(zhuǎn)到目標(biāo)的方向線所成的角(一般指銳角),通常表達成北(南)偏東(西)多少度.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

11.如圖,在?ABCD中,BE平分∠ABC,CF平分∠BCD,E、F在AD上,BE與CF相交于點G,若AB=7,BC=10,則△EFG與△BCG的面積之比為( 。
A.4:25B.49:100C.7:10D.2:5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

12.已知如圖,拋物線經(jīng)過點A(-1,0)、B(3,0)、C(0,2)三點,
(1)求拋物線的解析式;
(2)動點M在拋物線的對稱軸上,當(dāng)△AMC的周長最小時,求點M的坐標(biāo);
(3)點P是在第一象限內(nèi)拋物線上的一動點,問點P在何處時△BCP的面積最大?最大面積是多少?并寫出此時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,Rt△ABO的邊AB垂直于x軸,垂足為點B,反比例函數(shù)y1=$\frac{{k}_{1}}{x}$(x>0)的圖象經(jīng)過AO的中點C,且與AB相交于點D,OB=4,AB=3.
(1)求反比例函數(shù)y1=$\frac{{k}_{1}}{x}$(x>0)的解析式;
(2)設(shè)經(jīng)過C,D兩點的一次函數(shù)解析式為y2=k2x+b,求出其解析式,并根據(jù)圖象直接寫出在第一象限內(nèi),當(dāng)y2>y1時,x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

16.第24屆冬季奧林匹克運動會,將于2022年02月04日~2022年02月20日在中華人民共和國北京市和張家口市聯(lián)合舉行.在會徽的圖案設(shè)計中,設(shè)計者常常利用對稱性進行設(shè)計,下列四個圖案是歷屆會徽圖案上的一部份圖形,其中不是軸對稱圖形的是( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.列方程解應(yīng)用題
我國元朝朱世杰所著的《算學(xué)啟蒙》(1299年)一書,有一道題目是:“今有良馬日行二百四十里,駑馬日行一百五十里.駑馬先行一十二日,問良馬幾何日追及之.”
譯文是:跑得快的馬每天走240里,跑得慢的馬每天走150里.慢馬先走12天,快馬幾天可以追上慢馬?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.計算
(1)-6+3.6+4-3.6;
(2)($\frac{1}{3}$-$\frac{5}{12}$+$\frac{1}{4}$)×(-24);
(3)-12+[(-2)2-($\frac{2}{3}$-1)÷(-$\frac{1}{6}$)];
(4)2a-[2b+2($\frac{1}{2}$a-3b)+4a].

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

10.某書店老板去圖書批發(fā)市場購買某種圖書,第一次用1200元購書若干本,并按該書定價7元出售,很快售完;由于該書暢銷,第二次購書時,每本書的進價是第一次進價的1.2倍,他用1500元所購該書數(shù)量比第一次多10本;當(dāng)按定價售出200本時,出現(xiàn)滯銷,便以定價的4折售完剩余的書.
(1)求出第一次購書的進價是多少元?
(2)試問該老板這兩次售書總體上是賠錢了,還是賺錢了(不考慮其它因素)?若賠錢,賠多少?若賺錢,賺多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

11.如圖,AC⊥AE于A點,BD⊥BF于B點,且點A,B在直線MN上,∠1=∠2.
①AE與BF平行嗎?請說明理由.
②若∠1=30°,求∠ABF的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案