精英家教網 > 初中數學 > 題目詳情

【題目】問題背景:

如圖①,在四邊形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究線段AC,BC,CD之間的數量關系

小吳同學探究此問題的思路是:將△BCD繞點D,逆時針旋轉90°到△AED處,點B,C分別落在點A,E處(如圖②),易證點C,A,E在同一條直線上,并且△CDE是等腰直角三角形,所以CE=CD,從而得出結論:AC+BC=CD

簡單應用:

(1)在圖①中,若AC=,BC=,則CD=

(2)如圖③,AB是⊙O的直徑,點C、D在⊙上,,若AB=13,BC=12,求CD的長

拓展規(guī)律:

(3)如圖④,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的長(用含m,n的代數式表示)

(4)如圖⑤,∠ACB=90°,AC=BC,點P為AB的中點,若點E滿足AE=AC,CE=CA,點Q為AE的中點,則線段PQ與AC的數量關系是

【答案】(1)3;(2);(3);(4)PQ=AC或PQ=AC.

【解析】

試題分析:(1)由題意可知:AC+BC=CD,所以將AC與BC的長度代入即可得出CD的長度;

(2)連接AC、BD、AD即可將問題轉化為第(1)問的問題,利用題目所給出的證明思路即可求出CD的長度;

(3)以AB為直徑作⊙O,連接OD并延長交⊙O于點D1,由(2)問題可知:AC+BC=CD1;又因為CD1=D1D,所以利用勾股定理即可求出CD的長度;

(4)根據題意可知:點E的位置有兩種,分別是當點E在直線AC的右側和當點E在直線AC的左側時,連接CQ、CP后,利用(2)和(3)問的結論進行解答.

試題解析:(1)由題意知:AC+BC=CD,∴=CD,∴CD=3,;

(2)連接AC、BD、AD,∵AB是⊙O的直徑,∴∠ADB=∠ACB=90°,∵,∴AD=BD,將△BCD繞點D,逆時針旋轉90°到△AED處,如圖③,∴∠EAD=∠DBC,∵∠DBC+∠DAC=180°,∴∠EAD+∠DAC=180°,∴E、A、C三點共線,∵AB=13,BC=12,∴由勾股定理可求得:AC=5,∵BC=AE,∴CE=AE+AC=17,∵∠EDA=∠CDB,∴∠EDA+∠ADC=∠CDB+∠ADC,即∠EDC=∠ADB=90°,∵CD=ED,∴△EDC是等腰直角三角形,∴CE=CD,∴CD=;

(3)以AB為直徑作⊙O,連接OD并延長交⊙O于點D1,連接D1A,D1B,D1C,如圖④

由(2)的證明過程可知:AC+BC=D1C,∴D1C=,又∵D1D是⊙O的直徑,∴∠DCD1=90°,∵AC=m,BC=n,∴由勾股定理可求得:,∴,∵,∴==,∵m<n,∴CD=

(3)當點E在直線AC的左側時,如圖⑤,連接CQ,PC,∵AC=BC,∠ACB=90°,點P是AB的中點,∴AP=CP,∠APC=90°,又∵CA=CE,點Q是AE的中點,∴∠CQA=90°,設AC=a,∵AE=AC,∴AE=a,∴AQ=AE=,由勾股定理可求得:CQ=a,由(2)的證明過程可知:AQ+CQ=PQ,∴PQ=a,∴PQ=AC;

當點E在直線AC的右側時,如圖⑥,連接CQ、CP,同理可知:∠AQC=∠APC=90°,設AC=a,∴AQ=AE=,由勾股定理可求得:CQ=a,由(3)的結論可知:PQ=(CQ﹣AQ),∴PQ=AC.

綜上所述,線段PQ與AC的數量關系是PQ=AC或PQ=AC.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知x=1是一元一次方程2x﹣a=3的解,則a的值是( 。
A.-1
B.0
C.1
D.2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】拖拉機開始工作時,油箱中有油30L,每小時耗油5L

1)寫出油箱中的剩余測量QL)與工作時間th)之間的函數表達式,并求出自變量t的取值范圍;

2)當拖拉機工作4h時,油箱內還剩余油多少升?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1是一副創(chuàng)意卡通圓規(guī),圖2是其平面示意圖,OA是支撐臂,OB是旋轉臂,使用時,以點A為支撐點,鉛筆芯端點B可繞點A旋轉作出圓.已知OA=OB=10cm

(1)當∠AOB=18°時,求所作圓的半徑;(結果精確到0.01cm)

(2)保持∠AOB=18°不變,在旋轉臂OB末端的鉛筆芯折斷了一截的情況下,作出的圓與(1)中所作圓的大小相等,求鉛筆芯折斷部分的長度.(結果精確到0.01cm)

(參考數據:sin9°≈0.1564,cos9°≈0.9877,sin18°≈0.3090,cos18°≈0.9511,可使用科學計算器)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】“※”是新規(guī)定的某種運算符號,得x※y=x2+y,則(-1※k=4k的值為( )

A. 3 B. 2 C. 1 D. 3

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】我們學過的全等變換方式有、,生活中常用這三種圖形變換進行圖案設計.在圖形的上述變換過程中,其不變,只是發(fā)生了改變.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】若(m+1)x|m|+2>0是關于x的一元一次不等式,則m=( )
A.±1
B.1
C.-1
D.0

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(2016四川省涼山州)如圖,在邊長為1的正方形網格中,△ABC的頂點均在格點上,點A、B的坐標分別是A(4,3)、B(4,1),把△ABC繞點C逆時針旋轉90°后得到△A1B1C

(1)畫出△A1B1C,直接寫出點A1、B1的坐標;

(2)求在旋轉過程中,△ABC所掃過的面積

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】x=4時,式子5(x+b)﹣10bx+4x的值相等,則b=_____

查看答案和解析>>

同步練習冊答案