如圖,已知點(diǎn)A,B分別在x軸和y軸上,且,點(diǎn)C的坐標(biāo)是,AB與OC相交于點(diǎn)G.點(diǎn)P從O出發(fā)以每秒1個單位的速度從O運(yùn)動到C,過P作直線EF∥AB分別交OA,OB于E,F(xiàn).解答下列問題:
(1)直接寫出點(diǎn)G的坐標(biāo)和直線AB的解析式.
(2)若點(diǎn)P運(yùn)動的時間為t,直線EF在四邊形OACB內(nèi)掃過的面積為s,請求出s與t的函數(shù)關(guān)系式;并求出當(dāng)t為何值時,直線EF平分四邊形OACB的面積.
(3)設(shè)線段OC的中點(diǎn)為Q,P運(yùn)動的時間為t,求當(dāng)t為何值時,△EFQ為直角三角形.

【答案】分析:(1)根據(jù)AB與OC相交于點(diǎn)G,以及C點(diǎn)橫縱坐標(biāo)相等得出G點(diǎn)坐標(biāo)為AB中點(diǎn),即可得出答案,再利用A,B兩點(diǎn)坐標(biāo)得出解析式即可;
(2)分別根據(jù)當(dāng)0<t≤3時,當(dāng)3<t<7時,利用相似三角形的性質(zhì)得出s與t的關(guān)系時即可.
(3)利用①當(dāng)P在線段OQ上,且∠EQF=90°時,以及②當(dāng)P在線段CQ上,且∠EQF=90°時,利用相似三角形的性質(zhì)得出即可.
解答:解:(1)G點(diǎn)的坐標(biāo)是
,得出A,B兩點(diǎn)坐標(biāo),
分別為:(3,0),(0,3),
代入y=kx+b,
,
解得:,
即可得出直線AB的解析式為:y=-x+3…(2分);

(2)∵C的坐標(biāo)是,
∴OC是∠AOB的角平分線.
又∵,
∴AB==6,
∴∠BAO=∠ABO=∠BOG=∠AOG=45°,
∴∠AGO=90°,即AB⊥OC,
∴OG=3,
①當(dāng)0<t≤3時,OP=t,
∵EF∥AB,
∴EF⊥OC,
∴EF=2OP=2t,
∴S=S△OEF=•EF•OP=•2t•t=t2…(5分),
②當(dāng)3<t<7時,OP=t,CP=7-t,CG=7-OG=7-3=4,
∵EF∥AB,
∴△CEF∽△CBA,
,
,
,
∴S=S四邊形OACB-S△CEF=•AB•CO-EF•CP,
=×6×7-×(7-t)(7-t),
=
∴s與t的函數(shù)關(guān)系式是:
…(7分)
當(dāng)直線EF平分四邊形OABC的面積時有:,
整理得:t2-14t+35=0,
解得:(不符合題意舍去); 
∴當(dāng)時,直線EF平分四邊形OABC的面積.…(8分)

(3)①如圖1,當(dāng)P在線段OQ上,且∠EQF=90°時,
∵EF∥AB,
∴∠OEF=∠OAB=∠OBA=∠OFE=45°,
∴OE=OF,
又∵∠FOG=∠EOG=45°,OQ=OQ,
∴△OEQ≌△OFQ,
∴∠FQO=∠EQO=45°,
∴∠OFQ=∠FOE=∠FQE=90°,
∴四邊形OEQF是正方形,
,
即t=時,△EFQ為直角三角形,
②如圖2,當(dāng)P在線段CQ上,且∠EQF=90°時,
同理可證:△CQF≌△CQE,
∴△QEF是等腰直角三角形,
,
∵EF∥AB,
∴△CEF∽△CBA,
,
,
解得:t=5,
∴當(dāng)或t=5時,△EFQ為直角三角形.…(12分)
點(diǎn)評:此題主要考查了一次函數(shù)的綜合應(yīng)用以及相似三角形的性質(zhì)與判定,利用相似三角形的性質(zhì)得出對應(yīng)邊之間關(guān)系得出t的值是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖,已知點(diǎn)M、N分別是△ABC的邊BC、AC的中點(diǎn),點(diǎn)P是點(diǎn)A關(guān)于點(diǎn)M的對稱點(diǎn),點(diǎn)Q是點(diǎn)B關(guān)于點(diǎn)N的對稱點(diǎn),求證:P、C、Q三點(diǎn)在同一條直線上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知點(diǎn)M、N分別是平行四邊形ABCD的邊AB、DC的中點(diǎn),求證:∠DAN=∠BCM.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

21、如圖,已知點(diǎn)E、F分別是菱形ABCD的邊AB、AD上,BE=DF,
求證:AE=AF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•金山區(qū)二模)如圖,已知點(diǎn)D,E分別是邊AC和AB的中點(diǎn),設(shè)
BO
=
a
OC
=
b
,那么
ED
=
a
+
b
2
a
+
b
2
(用
a
,
b
來表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知點(diǎn)E、F分別是AC、AB的中點(diǎn),其中△AFE的面積為2,則△EFG的面積為
2
3
2
3

查看答案和解析>>

同步練習(xí)冊答案