平面直角坐標(biāo)系內(nèi)所有的點(diǎn)都可以用來(lái)表示的是

[  ]

A.一個(gè)有理數(shù)
B.一對(duì)有理數(shù)
C.一對(duì)實(shí)數(shù)
D.一對(duì)有序?qū)崝?shù)

答案:D
解析:

就像數(shù)軸和實(shí)數(shù)一一對(duì)應(yīng)一樣,平面直角坐標(biāo)系中的點(diǎn)和一對(duì)有序?qū)崝?shù)是一一對(duì)應(yīng)的.


提示:

題目考查的是平面直角坐標(biāo)系中點(diǎn)與實(shí)數(shù)的對(duì)應(yīng)關(guān)系.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)在平面直角坐標(biāo)系內(nèi),已知點(diǎn)A(2,1),O為坐標(biāo)原點(diǎn).請(qǐng)你在坐標(biāo)軸上確定點(diǎn)P,使得△AOP成為等腰三角形.在給出的坐標(biāo)系中把所有這樣的點(diǎn)P都找出來(lái),畫(huà)上實(shí)心點(diǎn),并在旁邊標(biāo)上P1,P2,…,PK的坐標(biāo)(有k個(gè)就標(biāo)到PK為止,不必寫出畫(huà)法).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系內(nèi),直線y=
3
4
x+3與兩坐標(biāo)軸交于A、B兩點(diǎn),點(diǎn)O為坐標(biāo)原點(diǎn),若在該坐標(biāo)平面內(nèi)有以點(diǎn)P(不與點(diǎn)A、B、O重合)為頂點(diǎn)的直角三角形與Rt△ABO全等,且這個(gè)以點(diǎn)P為頂點(diǎn)的直角三角形與Rt△ABO有一條公共邊,則所有符合條件的P點(diǎn)個(gè)數(shù)為( 。
A、9個(gè)B、7個(gè)C、5個(gè)D、3個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•自貢)已知A,B兩個(gè)口袋中都有6個(gè)分別標(biāo)有數(shù)字0,1,2,3,4,5的彩球,所有彩球除標(biāo)示的數(shù)字外沒(méi)有區(qū)別.甲、乙兩位同學(xué)分別從A,B兩個(gè)口袋中隨意摸出一個(gè)球.記甲摸出的球上數(shù)字為x,乙摸出的球上數(shù)字為y,數(shù)對(duì)(x,y)對(duì)應(yīng)平面直角坐標(biāo)系內(nèi)的點(diǎn)Q,則點(diǎn)Q落在以原點(diǎn)為圓心,半徑為
5
的圓上或圓內(nèi)的概率為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•天橋區(qū)三模)在不透明的口袋中,有四只形狀、大小、質(zhì)地完全相同的小球,四只小球上分別標(biāo)有數(shù)字
1
2
,2,4,-
1
3
、小明先從盒子里隨機(jī)取出一只小球(不放回),記下數(shù)字作為平面直角坐標(biāo)系內(nèi)點(diǎn)的橫坐標(biāo);再由小華隨機(jī)取出一只小球,記下數(shù)字作為平面直角坐標(biāo)系內(nèi)點(diǎn)的縱坐標(biāo).
(1)用列表法或畫(huà)樹(shù)狀圖,表示所有這些點(diǎn)的坐標(biāo);
(2)小剛為小明、小華兩人設(shè)計(jì)了一個(gè)游戲:當(dāng)上述(1)中的點(diǎn)在正比例函數(shù)y=x圖象上方時(shí)小明獲勝,否則小華獲勝、你認(rèn)為這個(gè)游戲公平嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案