【題目】如圖,直線與直線相交于點,且點的縱坐標為,直線軸于點將直線向上平移個單位得直線,交軸于點,交直線于點且點的橫坐標為

1)求直線的解析式;

2)連接的面積.

【答案】1;(2

【解析】

1)根據(jù)平移的規(guī)律即可求得直線的解析式;

2)根據(jù)一次函數(shù)圖象上點的坐標特征求得的坐標,進而根據(jù)待定系數(shù)法求得直線的解析式,從而求得的坐標,由直線的解析式求得的坐標,然后根據(jù)求得即可.

解:(1將直線向上平移3個單位得直線,

直線;

2直線與直線相交于點,且點的縱坐標為

代入得,,

解得,

,

直線交直線于點,且點的橫坐標為

代入得,

,,

設直線的解析式為,

直線經(jīng)過點、,

,解得,

直線的解析式為

,求得,

直線,

,求得

,

,

的面積為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】計算:

14992

282018×(﹣0.1252019

33a2b(﹣a4b2+a2b3

4)(a+12aa1

5)解二元一次方程組

6)先化簡,再求值:(x+12﹣(x1)(x+4),其中x=﹣2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠C=90°AD是∠BAC的平分線,DEABE,FAC上,且BD=DF

1)求證:CF=EB;

2)試判斷ABAF,EB之間存在的數(shù)量關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場購進一批日用品,若按每件5元的價格銷售,每月能賣出3萬件;若按每件6元的價格銷售,每月能賣出2萬件,假定每月銷售件數(shù) (件)與價格 (元/件)之間滿足一次函數(shù)關系.
(1)試求:y與x之間的函數(shù)關系式;
(2)這批日用品購進時進價為4元,則當銷售價格定為多少時,才能使每月的潤最大?每月的最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC= ,BC=1,D在AC上,將△ADB沿直線BD翻折后,點A落在點E處,如果AD⊥ED,那么△ABE的面積是( )

A.1
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一塊矩形ABCD的空地上劃一塊四邊形MNPQ進行綠化.如圖,四邊形的頂點在矩形的邊上,且AN=AM=CP=CQ=xcm,已知矩形的邊BC=200m,邊AB=am,a為大于200的常數(shù),設四邊形MNPQ的面積為sm2

(1)求S關于x的函數(shù)關系式,并直接寫出自變量x的取值范圍.
(2)若a=400,求S的最大值,并求出此時x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ABBC1,CD,DA1,且∠B90°.求:

1)∠DAC的度數(shù);

2)四邊形ABCD的面積(結果保留根號);

3)將△ABC沿AC翻折至△AB′C,如圖所示,連接B′D,求△AB′D的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點D,E分別是⊙O的內接正三角形ABC的AB,AC邊上的中點,若⊙O的半徑為2,則DE的長等于( )

A.
B.
C.1
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:在正方形網(wǎng)格中有一個△ABC,按要求進行下列作圖(只能借助于網(wǎng)格)

(1)畫出△ABCBC邊上的高AHBC邊上的中線AD

(2)畫出將△ABC向右平移5格又向上平移3格后的△ABC′.

(3)ABC的面積為   

(4)若連接AA′,CC′,則這兩條線段之間的關系是   

查看答案和解析>>

同步練習冊答案