【題目】如圖,正方形ABCD的邊長(zhǎng)為3,延長(zhǎng)CB至點(diǎn)M,使SABM=,過(guò)點(diǎn)BBNAM,垂足為N,O是對(duì)角線AC,BD的交點(diǎn),連接ON,則ON的長(zhǎng)為________

【答案】

【解析】

先根據(jù)三角形的面積公式求出BM的長(zhǎng),由條件可證得ABN∽△BNM∽△ABM,且可求得AM=,利用對(duì)應(yīng)線段的比相等可求得ANMN,進(jìn)一步可得到=,且∠CAM=NAO,可證得AON∽△AMC,利用相似三角形的性質(zhì)可求得ON.

∵正方形ABCD的邊長(zhǎng)為3,SABM=,

BM=

AB=3,BM=1,

AM=,

∵∠ABM=90°,BNAM,

∴△ABN∽△BNM∽△AMB,

AB2=AN×AM,BM2=MN×AM,

AN=,MN=,

AB=3,CD=3,

AC=3

AO=,

=,=,

=,且∠CAM=NAO,

∴△AON∽△AMC,

==,

ON=

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形OABC和正方形CDEF在平面直角坐標(biāo)系中,點(diǎn)O,CFy軸上,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)MOC的中點(diǎn),拋物線y=ax2+b經(jīng)過(guò)MB,E三點(diǎn),則的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分9分)

根據(jù)要求,解答下列問(wèn)題.

(1)根據(jù)要求,解答下列問(wèn)題.

方程x2-2x+1=0的解為_(kāi)_______________________;

方程x23x+2=0的解為_(kāi)_______________________;

方程x24x+3=0的解為_(kāi)_______________________;

…… ……

(2)根據(jù)以上方程特征及其解的特征,請(qǐng)猜想:

方程x29x+8=0的解為_(kāi)_______________________;

關(guān)于x的方程________________________的解為x1=1,x2=n.

(3)請(qǐng)用配方法解方程x29x+8=0,以驗(yàn)證猜想結(jié)論的正確性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,拋物線y=ax2+bx+c與坐標(biāo)軸分別交于點(diǎn)A(0,6),B(6,0),C(﹣2,0),點(diǎn)P是線段AB上方拋物線上的一個(gè)動(dòng)點(diǎn).

(1)求拋物線的解析式;

(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△PAB的面積有最大值?

(3)過(guò)點(diǎn)Px軸的垂線,交線段AB于點(diǎn)D,再過(guò)點(diǎn)PPEx軸交拋物線于點(diǎn)E,連結(jié)DE,請(qǐng)問(wèn)是否存在點(diǎn)P使△PDE為等腰直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形中,點(diǎn)分別是的中點(diǎn),分別是的中點(diǎn),滿足什么條件時(shí),四邊形是菱形?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)對(duì)本校500名畢業(yè)生中考體育加試測(cè)試情況進(jìn)行調(diào)查,根據(jù)男生1 000m及女生800m測(cè)試成績(jī)整理、繪制成如下不完整的統(tǒng)計(jì)圖(圖①、圖②),請(qǐng)根據(jù)統(tǒng)計(jì)圖提供的信息,回答下列問(wèn)題:

(1)該校畢業(yè)生中男生有________人,女生有________人;

(2)扇形統(tǒng)計(jì)圖中a=________,b=________;

(3)補(bǔ)全條形統(tǒng)計(jì)圖(不必寫(xiě)出計(jì)算過(guò)程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小明準(zhǔn)備測(cè)量一段水渠的深度,他把一根竹竿AB豎直插到水底,此時(shí)竹竿AB離岸邊點(diǎn)C處的距離米。竹竿高出水面的部分AD長(zhǎng)0.5米,如果把竹竿的頂端A拉向岸邊點(diǎn)C處,竿頂和岸邊的水面剛好相齊,則水渠的深度BD為(

A. 2B. 2.5C. 2.25D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程mx2+(3m+1)x+3=0.

1)求證:不論m取何值,方程都有實(shí)數(shù)根;

2)若方程有兩個(gè)整數(shù)根,求整數(shù)m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A(﹣6,0),C(0,2).將矩形OABC繞點(diǎn)O順時(shí)針?lè)较蛐D(zhuǎn),使點(diǎn)A恰好落在OB上的點(diǎn)A1處,則點(diǎn)B的對(duì)應(yīng)點(diǎn)B1的坐標(biāo)為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案