已知:如圖,AB是⊙O的直徑,P是AB上的一點(diǎn)(與A、B不重合),QP⊥AB,垂足為P,直線QA交⊙O于C點(diǎn),過(guò)C點(diǎn)作⊙O的切線交直線QP于點(diǎn)D.則△CDQ是等腰三角形.
對(duì)上述命題證明如下:
證明:連接OC
∵OA=OC
∴∠A=∠1
∵CD切O于C點(diǎn)
∴∠OCD=90°
∴∠1+∠2=90°
∴∠A+∠2=90°
在Rt△QPA中,∠QPA=90°
∴∠A+∠Q=90°
∴∠2=∠Q
∴DQ=DC
即CDQ是等腰三角形.
問(wèn)題:對(duì)上述命題,當(dāng)點(diǎn)P在BA的延長(zhǎng)線上時(shí),其他條件不變,如圖所示,結(jié)論“△CDQ是等腰三角形”還成立嗎?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說(shuō)明理由.
答:結(jié)論“△CDQ是等腰三角形”還成立.
證明:連接OC,
∵OA=OC,
∴∠BAC=∠ACO.
∵CD切O于C點(diǎn),
∴∠OCD=90°.
∴∠AC0+∠DAC=90°.
在Rt△QPA中,∠QPA=90°,
∴∠PAQ+∠Q=90°,
∴∠DCQ=∠Q,
∴DQ=DC.
即△CDQ是等腰三角形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,P是⊙O外一點(diǎn),PA是⊙O的切線,PO=26cm,PA=24cm,則⊙O的周長(zhǎng)為( 。
A.18πcmB.16πcmC.20πcmD.24πcm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知△ABC內(nèi)接于⊙O,AE切⊙O于點(diǎn)A,BCAE.
(1)求證:△ABC是等腰三角形;
(2)設(shè)AB=10cm,BC=8cm,點(diǎn)P是射線AE上的點(diǎn),若以A、P、C為頂點(diǎn)的三角形與△ABC相似,問(wèn)這樣的點(diǎn)有幾個(gè)并求AP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,圓O的半徑OA與OB互相垂直,P是線段OB延長(zhǎng)線上的一動(dòng)點(diǎn),線段AP交圓O于點(diǎn)D,過(guò)D點(diǎn)作圓O的切線交OP于點(diǎn)E.
(1)觀察圖形,點(diǎn)P在移動(dòng)過(guò)程中比較DE與EP的大小關(guān)系,并對(duì)你的結(jié)論加以證明;
(2)作DH⊥OP于點(diǎn)H,若HE=6,DE=4
3
,求圓O半徑的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,⊙O交x軸于A、B兩點(diǎn),直線FA⊥x軸于點(diǎn)A,點(diǎn)D在FA上,且DO平行于⊙O的弦MB,連DM并延長(zhǎng)交x軸于點(diǎn)C.
(1)判斷直線DC與⊙O的位置關(guān)系,并給出證明;
(2)設(shè)點(diǎn)D的坐標(biāo)為(-2,4),①求MC的長(zhǎng);②若動(dòng)點(diǎn)P從點(diǎn)A出發(fā)向點(diǎn)D勻速運(yùn)動(dòng),速度是每秒1個(gè)單位長(zhǎng);同時(shí)點(diǎn)Q從點(diǎn)D出發(fā)向點(diǎn)C勻速運(yùn)動(dòng),速度是每秒2個(gè)單位長(zhǎng);其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí)運(yùn)動(dòng)即結(jié)束.連接PQ交OD于點(diǎn)H,當(dāng)△PDH為直角三角形時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,△ABC為等腰三角形,AB=AC,O是底邊BC的中點(diǎn),⊙O與腰AB相切于點(diǎn)D,求證:AC與⊙O相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在△ABC中,AB=2,AC=
2
,以A為圓心,1為半徑的圓與邊BC相切,則BC的長(zhǎng)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖AB是⊙O的直徑,⊙O過(guò)BC的中點(diǎn)D,且DE⊥AC于點(diǎn)E.
(1)求證:DE是⊙O的切線;
(2)若∠C=30°,CD=
3
,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,矩形紙片ABCD,點(diǎn)E是AB上一點(diǎn),且BE:EA=5:3,EC=10
5
,把△BCE沿折痕EC向上翻折,若點(diǎn)B恰好落在AD邊上,設(shè)這個(gè)點(diǎn)為F,則
(1)AB=______,BC=______;
(2)若⊙O內(nèi)切于以F、E、B、C為頂點(diǎn)的四邊形,則⊙O的面積=______.

查看答案和解析>>

同步練習(xí)冊(cè)答案