【題目】如圖,AB 是⊙M 的直徑,BC 是⊙M 的切線,切點(diǎn)為 B,C 是 BC 上(除 B 點(diǎn)外)的任意一點(diǎn),連接 CM 交⊙M 于點(diǎn) G,過點(diǎn) C 作 DC⊥BC 交 BG 的 延長線于點(diǎn) D,連接 AG 并延長交 BC 于點(diǎn) E.
(1)求證:△ABE∽△BCD;
(2)若 MB=BE=1,求 CD 的長度.
【答案】(1)證明見解析;(2)CD=
【解析】
(1)根據(jù)直徑所對圓周角是直角和切線的性質(zhì),即可證明三角形相似;
(2)利用勾股定理和面積法得到 AG、GE,根據(jù)三角形相似求得 GH,得到 MB、GH 和 CD 的數(shù)量關(guān)系,求得 CD的長即可.
(1)∵BC 為⊙M 切線,
∴∠ABC=90°,
∵DC⊥BC,
∴∠BCD=90°,
∴∠ABC=∠BCD,
∵AB 是⊙M 的直徑,
∴∠AGB=90°,
即:BG⊥AE,
∴∠CBD=∠A,
∴△ABE∽△BCD;
(2)過點(diǎn) G 作 GH⊥BC 于 H,
∵MB=BE=1∴AB=2,
∴AE=,
由(1)根據(jù)面積法 ABBE=BGAE,
∴BG=,
由勾股定理:AG=,GE=,
∵GH∥AB,
∴,
∴,
∴GH=,
又∵GH∥AB,
∴① ,
同理:②,
①+②,得 ,
∴ ,
∴CD=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)(為正整數(shù))都在數(shù)軸上,點(diǎn)在原點(diǎn)的左邊,且;點(diǎn)在點(diǎn)的右邊,且;點(diǎn)在點(diǎn)的左邊,且;點(diǎn)在點(diǎn)的右邊,且;…,依照上述規(guī)律,點(diǎn)所表示的數(shù)分別為 ( )
A.2018,-2019B.1009,-1010C.-2018,2019D.-1009,1009
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程
(1)若方程有兩個(gè)相等的實(shí)數(shù)根,求m的值,并求出此時(shí)方程的根;
(2)是否存在正數(shù)m,使方程的兩個(gè)實(shí)數(shù)根的平方和等于224.若存在,求出滿足條件的m的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知A(0,a)、B(b, 0),且a、b滿足: ,點(diǎn)D為x正半軸上一動(dòng)點(diǎn)
(1)求A、B兩點(diǎn)的坐標(biāo)
(2)如圖,∠ADO的平分線交y軸于點(diǎn)C,點(diǎn) F為線段OD上一動(dòng)點(diǎn),過點(diǎn)F作CD的平行線交y軸于點(diǎn)H,且∠AFH=45°, 判斷線段AH、FD、AD三者的數(shù)量關(guān)系,并予以證明
(3)以AO為腰,A為頂角頂點(diǎn)作等腰△ADO,若∠DBA=30°,直接寫出∠DAO的度數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)O在直線AB上,點(diǎn)A1、A2、A3,…在射線OA上,點(diǎn)B1、B2、B3,…在射線OB上,圖中的每一個(gè)實(shí)線段和虛線段的長均為一個(gè)單位長度,一個(gè)動(dòng)點(diǎn)M從O點(diǎn)出發(fā),按如圖所示的箭頭方向沿著實(shí)線段和以O為圓心的半圓勻速運(yùn)動(dòng),速度為每秒1個(gè)單位長度,按此規(guī)律,則動(dòng)點(diǎn)M到達(dá)A101點(diǎn)處所需時(shí)間為____秒.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:點(diǎn)B、F、C、E在一條直線上,F(xiàn)B=CE,AC=DF.能否由上面的已知條件證明AB∥ED?如果能,請給出證明;如果不能,請從下列三個(gè)條件中選擇一個(gè)合適的條件,添加到已知條件中,使AB∥ED成立,并給出證明.
供選擇的三個(gè)條件(請從其中選擇一個(gè)):
①AB=ED;
②BC=EF;
③∠ACB=∠DFE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某種產(chǎn)品展開圖,高為3cm.
(1)求這個(gè)產(chǎn)品的體積.
(2)請為廠家設(shè)計(jì)一種包裝紙箱,使每箱能裝5件這種產(chǎn)品,要求沒有空隙且要使該紙箱所用材料盡可能少(紙的厚度不計(jì),紙箱的表面積盡可能小),求此長方體的表面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,是等腰直角三角形,其中,是邊上的一點(diǎn),連接,過作交于,,且,連接并延長,交于點(diǎn).若四邊形的面積為,則的面積為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,小正方形方格的邊長為 1,
按要求作圖,并根據(jù)要求解答問題:
(1)作圖:連接圖中小正方形方格的某兩個(gè)頂點(diǎn),分別得到三條線段、、,使得、、;
(2)判斷(1)中的三條線段、、能否構(gòu)成三角形,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com