【題目】已知拋物線yax22axcy軸交于C點(diǎn),與x軸交于A、B兩點(diǎn),點(diǎn)A的坐標(biāo)是(-1,0),O是坐標(biāo)原點(diǎn),且OC=3OA

1)求拋物線的函數(shù)表達(dá)式;

2)直接寫(xiě)出直線BC的函數(shù)表達(dá)式;

3)如圖1,Dy軸的負(fù)半軸上的一點(diǎn),且OD=2,以OD為邊作正方形ODEF.將正方形ODEF以每秒1個(gè)單位的速度沿x軸的正方向移動(dòng),在運(yùn)動(dòng)過(guò)程中,設(shè)正方形ODEF△OBC重疊部分的面積為s,運(yùn)動(dòng)的時(shí)間為t秒(0t≤2).

求:①st之間的函數(shù)關(guān)系式;

在運(yùn)動(dòng)過(guò)程中,s是否存在最大值?如果存在,直接寫(xiě)出這個(gè)最大值;如果不存在,請(qǐng)說(shuō)明理由.

4)如圖2,點(diǎn)P1,k)在直線BC上,點(diǎn)Mx軸上,點(diǎn)N在拋物線上,是否存在以AM、N、P為頂點(diǎn)的平行四邊形?若存在,請(qǐng)直接寫(xiě)出M點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】1y=x22x3 ;

2)直線BC的函數(shù)表達(dá)式為y=x3

3

當(dāng)t =2秒時(shí),S有最大值,最大值為

4)存在符合條件的點(diǎn)M,且坐標(biāo)為M 1(-,),M2,), M3,),M4

【解析】分析:(1)先由OC、OA的數(shù)量關(guān)系確定點(diǎn)C的坐標(biāo),然后利用待定系數(shù)法可求出拋物線的解析式; (2)由(1)的拋物線解析式可得點(diǎn)B的坐標(biāo),結(jié)合點(diǎn)C的坐標(biāo),利用待定系數(shù)法求解即可; (3)①首先要明確正方形ODEF和△OBC重合部分的形狀:當(dāng)點(diǎn)D在△OBC內(nèi)部時(shí),兩者的重合部分是矩形;當(dāng)點(diǎn)D在△OBC外部時(shí),兩者的重合部分是五邊形,其面積可由正方形的面積減去△ 的面積(G、H分別為 、 和線段BC的交點(diǎn)).在判斷t的取值范圍時(shí),要注意一個(gè)“關(guān)鍵點(diǎn)”即點(diǎn)D位于線段BC上時(shí); ②根據(jù)①的函數(shù)性質(zhì)即可得到答案. (4)若存在以A、M、N、P為頂點(diǎn)的平行四邊形,應(yīng)分AM PN或AN PM兩種情況.由于AM在x軸上,結(jié)合平行四邊形的特點(diǎn)可知:無(wú)論哪種情況,點(diǎn)N到x軸的距離都等于點(diǎn)P到x軸的距離,根據(jù)這個(gè)特點(diǎn)可確定點(diǎn)M、N的坐標(biāo).

本題解析:(1)∵ A(-1,0), ,C(0,-3)

∵拋物線經(jīng)過(guò)A(-1,0),C(0,-3)

,∴,

∴y=x2-2x-3

(2)由(1)的拋物線解析式可知:點(diǎn)B(3,0).

設(shè)直線BC的解析式為y=kx+b.

將B(3,0),C(0,-3)代入得,解得 ,

∴直線BC的函數(shù)表達(dá)式為y=x-3.

(3)當(dāng)正方形ODEF的頂點(diǎn)D運(yùn)動(dòng)到直線BC上時(shí),設(shè)D點(diǎn)的坐標(biāo)為(m,-2),

根據(jù)題意得: -2=m-3,∴m=1

①當(dāng)0<t≤1時(shí),S1=2t

當(dāng)1<t≤2時(shí)

S2= =2t-

=-,

②當(dāng)t =2秒時(shí),S有最大值,最大值為

(4)由(2)知:點(diǎn)P(1,-2),假設(shè)存在符合條件的點(diǎn)M.

①當(dāng)AM∥PN,AM=PN時(shí),點(diǎn)N、P的縱坐標(biāo)相同,

即點(diǎn)N的縱坐標(biāo)為-2,代入拋物線的解析式中得x-2x-3=-2,

解得 x=1± ,

∴AM=NP=,

∴M 1(-,0) M2,0),

②當(dāng)AN∥PM,AN=PM時(shí),平行四邊形的對(duì)角線PN、AM互相平分.

設(shè)M(m,0),則N(m-2,2).

將點(diǎn)N的坐標(biāo)代入拋物線的解析式中,得(m-2)-2(m-2)-3=2,

解得 m=3±

∴M3(3-,0) M4(3+,0 ).

綜上,存在符合條件的M點(diǎn),且坐標(biāo)為:

M 1(-,0) M2,0)

M3(3-,0) M4(3+,0 )

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在ABC中,∠B=∠C,點(diǎn)DBC邊上,點(diǎn)EAC邊上,且∠ADE=∠AED,連結(jié)DE

1)若∠BAC100°,∠DAE40°,則∠CDE   ,此時(shí)   

2)若點(diǎn)DBC邊上(點(diǎn)BC除外)運(yùn)動(dòng),試探究∠BAD與∠CDE的數(shù)量關(guān)系并說(shuō)明理由;

3)若點(diǎn)D在線段BC的延長(zhǎng)線上,點(diǎn)E在線段AC的延長(zhǎng)線上(如圖②),其余條件不變,請(qǐng)直接寫(xiě)出∠BAD與∠CDE的數(shù)量關(guān)系:   

4)若點(diǎn)D在線段CB的延長(zhǎng)線上(如圖③)、點(diǎn)E在直線AC上,∠BAD26°,其余條件不變,則∠CDE   °(友情提醒:可利用圖③畫(huà)圖分析)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:△ABC在坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,3),B(3,4),C(2,2).(正方形網(wǎng)格中, 每個(gè)小正方形的邊長(zhǎng)是1個(gè)單位長(zhǎng)度)

(1)畫(huà)出△ABC向下平移4個(gè)單位得到的△A1B1C1,并直接寫(xiě)出C1點(diǎn)的坐標(biāo);

(2)以點(diǎn)B為位似中心,在網(wǎng)格中畫(huà)出△A2BC2,使△A2BC2與△ABC位似,且位似比為2︰1,并直接寫(xiě)出C2點(diǎn)的坐標(biāo)及△A2BC2的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】網(wǎng)癮低齡化問(wèn)題已引起社會(huì)各界的高度關(guān)注,有關(guān)部門(mén)在全國(guó)范圍內(nèi)對(duì)歲的網(wǎng)癮人群進(jìn)行了簡(jiǎn)單的隨機(jī)抽樣調(diào)查,得到了如圖所示的兩個(gè)不完全統(tǒng)計(jì)圖.

請(qǐng)根據(jù)圖中的信息,解決下列問(wèn)題:

)求條形統(tǒng)計(jì)圖中的值.

)求扇形統(tǒng)計(jì)圖中歲部分所占的百分比;

)據(jù)報(bào)道,目前我國(guó)歲網(wǎng)癮人數(shù)約為萬(wàn),請(qǐng)估計(jì)其中歲的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABAC,CDBE分別是△ABC的角平分線,AGBC,AGBG,下列結(jié)論:①∠BAG2ABF;②BA平分∠CBG;③∠ABG=∠ACB;④∠CFB135°,其中正確的結(jié)論有( 。﹤(gè)

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】城市規(guī)劃期間,欲拆除一電線桿AB,已知距電線桿AB水平距離14 mD處有一大壩,背水坡CD的坡度i=12,壩高CF2 m,在壩頂C處測(cè)得桿頂A的仰角為30°,D、E之間是寬為2 m的人行道.

(1)BF的長(zhǎng);

(2)在拆除電線桿AB時(shí),為確保行人安全,是否需要將此人行道封上?請(qǐng)說(shuō)明理由.(在地面上,以點(diǎn)B為圓心,以AB長(zhǎng)為半徑的圓形區(qū)域?yàn)槲kU(xiǎn)區(qū)域,≈1.732,≈1.414)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一條長(zhǎng)為40cm的鐵絲剪成兩段,并以每一段鐵絲的長(zhǎng)度為周長(zhǎng)做成一個(gè)正方形.

1)要使這兩個(gè)正方形的面積之和等于52cm2,那么這段鐵絲剪成兩段后的長(zhǎng)度分別是多少?

2)兩個(gè)正方形的面積之和可能等于48cm2嗎?若能,求出兩段鐵絲的長(zhǎng)度;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)、在數(shù)軸上表示的數(shù)分別是,將線段分成等分,離點(diǎn)最近的分點(diǎn)為;再將線段分成等份,其分點(diǎn)由左向右依次為;繼續(xù)將線段分成等份,其分點(diǎn)由左向右依次為;對(duì)應(yīng)的數(shù)用科學(xué)記數(shù)法表示為:________對(duì)應(yīng)的數(shù)用科學(xué)記數(shù)法表示為:______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形中,,、相交于點(diǎn),點(diǎn)、分別是、的中點(diǎn),若,那么等于(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案