【題目】某校初一所有學(xué)生將在大禮堂內(nèi)參加2017年“元旦聯(lián)歡晚會(huì)”,若每排坐30人,則有8人無(wú)座位;若每排坐31人,則空26個(gè)座位,則初一年級(jí)共有多少名學(xué)生?設(shè)大禮堂內(nèi)共有x排座位,可列方程為______________________

【答案】30x+8=31x-26

【解析】試題解析:通過(guò)理解題意可以知道,本題目中存在1個(gè)等量關(guān)系,即:30×排數(shù)+8=31×排數(shù)-26,根據(jù)這一等量關(guān)系列出方程為:30x+8=31x-26.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩個(gè)共一個(gè)頂點(diǎn)的等腰直角ABC和等腰直角CEF,ABC=CEF=90°,連接AF,M是AF的中點(diǎn),連接MB、ME.

(1)如圖1,當(dāng)CB與CE在同一直線上時(shí),求證:MBCF;

(2)如圖1,若CB=a,CE=2a,求BM,ME的長(zhǎng);

(3)如圖2,當(dāng)BCE=45°時(shí),求證:BM=ME.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】

①1是絕對(duì)值最小的數(shù);

②0既不是正數(shù),也不是負(fù)數(shù);

一個(gè)有理數(shù)不是整數(shù)就是分?jǐn)?shù);

④0的絕對(duì)值是0

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)長(zhǎng)方形中,長(zhǎng)和寬分別為4cm、3cm,若該長(zhǎng)方形繞著它的一邊旋轉(zhuǎn)一周,則形成的幾何體的體積是多少?(結(jié)果用π表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB是O的直徑,點(diǎn)P在BA的延長(zhǎng)線上,PD切O于點(diǎn)D,過(guò)點(diǎn)B作BE垂直于PD,交PD的延長(zhǎng)線于點(diǎn)C,連接AD并延長(zhǎng),交BE于點(diǎn)E。

(1)求證:AB=BE;

(2)若PA=2 ,cosB=,求O半徑的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】日是全國(guó)中小學(xué)安全教育日,為了讓學(xué)生了解安全知識(shí),增強(qiáng)安全意識(shí),我校舉行了一次安全知識(shí)競(jìng)賽.為了了解這次競(jìng)賽的成績(jī)情況,從中抽取了部分學(xué)生的成績(jī)?yōu)闃颖荆L制了下列統(tǒng)計(jì)圖(說(shuō)明:A級(jí):90分——100分;B級(jí):75分——89分;C級(jí):60分——74分;D級(jí):60分以下).請(qǐng)結(jié)合圖中提供的信息,解答下列問(wèn)題:

(1)扇形統(tǒng)計(jì)圖中C級(jí)所在的扇形的圓心角度數(shù)是 .(2)請(qǐng)把條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)若該校共有2000名學(xué)生,請(qǐng)你用此樣本估計(jì)安全知識(shí)競(jìng)賽中A級(jí)和B級(jí)的學(xué)生共約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AD=acm,AB=bcm(a>b>4),半徑為2cm的O在矩形內(nèi)且與AB、AD均相切.現(xiàn)有動(dòng)點(diǎn)P從A點(diǎn)出發(fā),在矩形邊上沿著ABCD的方向勻速移動(dòng),當(dāng)點(diǎn)P到達(dá)D點(diǎn)時(shí)停止移動(dòng);O在矩形內(nèi)部沿AD向右勻速平移,移動(dòng)到與CD相切時(shí)立即沿原路按原速返回,當(dāng)O回到出發(fā)時(shí)的位置(即再次與AB相切)時(shí)停止移動(dòng).已知點(diǎn)P與O同時(shí)開(kāi)始移動(dòng),同時(shí)停止移動(dòng)(即同時(shí)到達(dá)各自的終止位置).

(1)如圖,點(diǎn)P從ABCD,全程共移動(dòng)了 cm(用含a、b的代數(shù)式表示);

(2)如圖,已知點(diǎn)P從A點(diǎn)出發(fā),移動(dòng)2s到達(dá)B點(diǎn),繼續(xù)移動(dòng)3s,到達(dá)BC的中點(diǎn).若點(diǎn)P與O的移動(dòng)速度相等,求在這5s時(shí)間內(nèi)圓心O移動(dòng)的距離;

(3)如圖,已知a=20,b=10.是否存在如下情形:當(dāng)O到達(dá)O1的位置時(shí)(此時(shí)圓心O1在矩形對(duì)角線BD上),DP與O1恰好相切?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線與反比例函數(shù)的圖象相交于點(diǎn)A(a,3),且與x軸相交于點(diǎn)B

(1)求該反比例函數(shù)的表達(dá)式;

(2)若P為y軸上的點(diǎn),且AOP的面積是AOB的面積的,請(qǐng)求出點(diǎn)P的坐標(biāo).

(3)寫出直線向下平移2個(gè)單位的直線解析式,并求出這條直線與雙曲線的交點(diǎn)坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市為創(chuàng)建國(guó)家級(jí)森林城市,政府決定對(duì)江邊一處廢棄荒地進(jìn)行綠化,要求栽植甲、乙兩種不同的樹(shù)苗共6000棵,且甲種樹(shù)苗不得多于乙種樹(shù)苗.某承包商以26萬(wàn)元的報(bào)價(jià)中標(biāo)承包了這項(xiàng)工程.根據(jù)調(diào)查及相關(guān)資料表明:移栽一棵樹(shù)苗的平均費(fèi)用為8元,甲、乙兩種樹(shù)苗的購(gòu)買價(jià)及成活率如表:

設(shè)購(gòu)買甲種樹(shù)苗x棵,承包商獲得的利潤(rùn)為y元.請(qǐng)根據(jù)以上信息解答下列問(wèn)題:

(1) 設(shè)y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

(2) 承包商要獲得不低于中標(biāo)價(jià)16%的利潤(rùn),應(yīng)如何選購(gòu)樹(shù)苗?

(3) 政府與承包商的合同要求,栽植這批樹(shù)苗的成活率必須不低于93%,否則承包商出資補(bǔ)栽;若成貨率達(dá)到94%以上(含94%),則政府另給予工程款總額6%的獎(jiǎng)勵(lì),該承包商應(yīng)如何選購(gòu)樹(shù)苗才能獲得最大利潤(rùn)?最大利潤(rùn)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案