【題目】如圖,頂角為36°的等腰三角形,其底邊與腰之比等,這樣的三角形稱為黃金三角形,已知腰AB=1,△ABC為第一個黃金三角形,△BCD為第二個黃金三角形,△CDE為第三個黃金三角形,以此類推,第2014個黃金三角形的周長( )

A. B. C. D.

【答案】D

【解析】

根據(jù)相似三角形對應角相等,對應邊成比例,求出前幾個三角形的周長,進而找出規(guī)律:第n個黃金三角形的周長為kn-1(2+k),從而得出答案.

解:∵AB=AC=1,

∴△ABC的周長為2+k;

△BCD的周長為k+k+k2=k(2+k);

△CDE的周長為k2+k2+k3=k2(2+k);

依此類推,第2014個黃金三角形的周長為k2013(2+k);

故選:C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在規(guī)格為8×8的邊長為1個單位的正方形網(wǎng)格中(每個小正方形的邊長為1),△ABC的三個頂點都在格點上,且直線m、n互相垂直.

(1)畫出△ABC關于直線n的對稱圖形△A′B′C′;

(2)直線m上存在一點P,使△APB的周長最;

在直線m上作出該點P;(保留畫圖痕跡)

②△APB的周長的最小值為   .(直接寫出結果)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,A=40°,ABC的外角∠CBD的平分線BEAC的延長線于點E.

(1)求∠CBE的度數(shù);

(2)過點DDFBE,交AC的延長線于點F,求∠F的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形中,,,點開始沿折線的速度運動,點開始沿邊以的速度移動,如果點、分別從同時出發(fā),當其中一點到達時,另一點也隨之停止運動,設運動時間為,當________時,四邊形也為矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC 中,∠ACB90,DE 分別在 AC、AB 邊上,把ADE 沿 DE 翻折得到FDE,點 F 恰好落在 BC 邊上,若CFD BFE 都是等腰三角形, 則∠BAC 的度數(shù)為_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,該小組發(fā)現(xiàn)8高旗桿DE的影子EF落在了包含一圓弧型小橋在內(nèi)的路上,于是他們開展了測算小橋所在圖的半徑的活動。小剛身高1.6,測得其影長為2.4,同時測得EG的長為3,HF的長為1,測得拱高(弧GH的中點到弦GH的距離,即MN的長)為2,求小橋所在圓的半徑。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,,CDAB邊上的高,若.

1)求CD的長.

2)動點P在邊AB上從點A出發(fā)向點B運動,速度為1個單位/秒;動點Q在邊AC上從點A出發(fā)向點C運動,速度為v個單位秒,設運動的時間為,當點Q到點C時,兩個點都停止運動.

①若當時,,求t的值.

②若在運動過程中存在某一時刻,使成立,求v關于t的函數(shù)表達式,并寫出自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,市防汛指揮部決定對某水庫的水壩進行加高加固設計師提供的方案是:水壩加高1(EF=1),背水坡AF的坡度i=11,已知AB=3,ABE=120°,求水壩原來的高度

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,∠A=∠B=90°,P是線段AB上的一個動點.

(1)若AD=2,BC=6,AB=8,且以A,D,P為頂點的三角形與以B,C,P為頂點的三角形相似,求AP的長;

(2)若AD=a,BC=b,AB=m,則當a,b,m滿足什么關系時,一定存在點P使△ADP∽△BPC?并說明理由.

查看答案和解析>>

同步練習冊答案