【題目】如圖某人在一斜坡坡腳A處測得電視塔塔尖C的仰角為60°,沿斜坡向上走到P處再測得塔尖C的仰角為45°,若OA=45米,斜坡的坡比(豎直高度與水平高度的比)為1:2,且O、A、B在同一條直線上.求電視塔OC的高度及此人所在位置P到AB的距離.(測角器高度忽略不計(jì),結(jié)果精確到0.1米.參考數(shù)據(jù):,)
【答案】點(diǎn)P到AB的距離約為11.0米.
【解析】
試題分析:因?yàn)橹苯侨切蜛OC中知道OA的長度,知道∠OAC=60°,解直角三角形可求出解.作PE⊥OB交OB于E點(diǎn),PD⊥CO交CO于D點(diǎn).根據(jù)∠PCD為45°,坡度為1:2,設(shè)出PE=x.根據(jù)線段相等,可列出方程求解.
試題解析:在Rt△COA中,∠OAC=60°,OA=45則OC=OAtan60°=45≈77.9(米)
故電視塔OC高度約為77.9米.
作PD⊥CO于D,PE⊥AB于E
設(shè)PE=x,則AE=2x,DO=PE=x,DP=OE=45+2x.
∵∠CPD=45°,
∴∠PCD=45°,則CD=DP.
∴45-x=45+2x,
即3x=45(-1),
∴x≈11.0(米).
故點(diǎn)P到AB的距離約為11.0米.(10分)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若點(diǎn)P(2-a,3a+6)到兩坐標(biāo)軸的距離相等,則點(diǎn)P的坐標(biāo)是( )
A. (3,3) B. (3,-3)或(6,-6) C. (6,-6) D. (3,3)或(6,-6)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果將一張“13排10號(hào)”的電影票記為(13,10),那么“3排8號(hào)”的電影票應(yīng)記為__________,(10,13)表示的電影票是____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算中,正確的是( )
A. 4x-x=2x B. 2x·x4=x5 C. x2y÷y=x2 D. (-3x)3=-9x3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=x2的圖象是一條______,它的開口向上,對稱軸為______,頂點(diǎn)坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】線段CD是由線段AB平移得到的,點(diǎn)A(﹣1,5)的對應(yīng)點(diǎn)為C(4,8),則點(diǎn)B(﹣4,﹣2)的對應(yīng)點(diǎn)D的坐標(biāo)為( )
A. (﹣9,﹣5)
B. (﹣9,1)
C. (1,﹣5)
D. (1,1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】三角形ABC的三個(gè)頂點(diǎn)A(1,2),B(-1,-2),C(-2,3),將其平移到點(diǎn)A′(-1,-2)處,且使A與A′重合,則B、C兩點(diǎn)對應(yīng)點(diǎn)的坐標(biāo)分別為________,________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P、Q分別是邊長為4cm的等邊△ABC的邊AB、BC上的動(dòng)點(diǎn)(其中P、Q不與端點(diǎn)重合),點(diǎn)P從頂點(diǎn)A,點(diǎn)Q從頂點(diǎn)B同時(shí)出發(fā),且它們的速度都為1cm/s,連接AQ、CP交于點(diǎn)M,則在P、Q運(yùn)動(dòng)的過程中,下列結(jié)論:(1)BP=CM;(2)△ABQ≌△CAP;(3)∠CMQ的度數(shù)始終等于60°;(4)當(dāng)?shù)?/span>秒或第秒時(shí),△PBQ為直角三角形.其中正確的結(jié)論有( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com