【題目】定義一種對正整數(shù)n的“F”運算:①當n為奇數(shù)時,結(jié)果為F(n)=3n+1;②當n為偶數(shù)時,結(jié)果為F(n)=(其中k是使F(n)為奇數(shù)的正整數(shù))……,兩種運算交替重復進行.例如,取n=13,則:
若n=24,則第100次“F”運算的結(jié)果是_____
【答案】4
【解析】
根據(jù)題意,寫出前幾次的運算結(jié)果,發(fā)現(xiàn)其中的規(guī)律,通過計算得出從第5次開始,結(jié)果就只有1、4兩個數(shù)循環(huán)出現(xiàn),進而觀察規(guī)律即可得結(jié)論.
解:當n=24,則第1次“F”運算的結(jié)果是:=3,
第2次“F”運算的結(jié)果是:3n+1=10,
第3次“F”運算的結(jié)果是:=5,
第4次“F”運算的結(jié)果是:3n+1=16,
第5次“F”運算的結(jié)果是:=1,
第6次“F”運算的結(jié)果是:3n+1=4,
第7次“F”運算的結(jié)果是:=1,
第8次“F”運算的結(jié)果是:3n+1=4,
…
觀察以上結(jié)果,從第5次開始,結(jié)果就只有1、4兩個數(shù)循環(huán)出現(xiàn),
且當次數(shù)為奇數(shù)時,結(jié)果是1,次數(shù)為偶數(shù)時,結(jié)果是4,
而第100次是偶數(shù),所以最后結(jié)果是4.
故答案為:4.
科目:初中數(shù)學 來源: 題型:
【題目】周末,小華和小亮想用所學的數(shù)學知識測量家門前小河的寬.測量時,他們選擇了河對岸邊的一棵大樹,將其底部作為點A,在他們所在的岸邊選擇了點B,使得AB與河岸垂直,并在B點豎起標桿BC,再在AB的延長線上選擇點D豎起標桿DE,使得點E與點C、A共線.
已知:CB⊥AD,ED⊥AD,測得BC=1m,DE=1.5m,BD=8.5m.測量示意圖如圖所示.請根據(jù)相關測量信息,求河寬AB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點D、F、E、G都在△ABC的邊上,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度數(shù).(請在下面的空格處填寫理由或數(shù)學式)
解:∵EF∥AD,(已知)
∴∠2= ( )
∵∠1=∠2,(已知)
∴∠1= ( )
∴ ∥ ,( )
∴∠AGD+ =180°,(兩直線平行,同旁內(nèi)角互補)
∵ ,(已知)
∴∠AGD= (等式性質(zhì))
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某運輸部門規(guī)定:辦理托運,當一種物品的重量不超過16千克時,需付基礎費30元和保險費a元:為限制過重物品的托運,當一件物品超過16千克時,除了付以上基礎費和保險費外,超過部分每千克還需付b元超重費.設某件物品的重量為x千克.
(1)當x≤16時,支付費用為__________________元(用含a的代數(shù)式表示);
當x≥16時,支付費用為_________________元(用含x和a、b的代數(shù)式表示);
(2)甲、乙兩人各托運一件物品,物品重量和支付費用如下表所示
物品重量(千克) | 支付費用(元) |
18 | 39 |
25 | 53 |
試根據(jù)以上提供的信息確定a,b的值.
(3)根據(jù)這個規(guī)定,若丙要托運一件超過16千克的物品,但支付的費用不想超過70元,那么丙托運的物品最多是多少千克.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,拋物線,與x軸交于A、B兩點(點A在點B的左側(cè)).
(1)求點A和點B的坐標;
(2)若點P(m,n)是拋物線上的一點,過點P作x軸的垂線,垂足為點D.
①在的條件下,當時,n的取值范圍是,求拋物線的表達式;
②若D點坐標(4,0),當時,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題探究:
如圖1,△ACB和△DCE均為等邊三角形,點A、D、E在同一直線上,連接BE.
(1)證明:AD=BE;
(2)求∠AEB的度數(shù).
問題變式:
(3)如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點A、D、E在同一直線上,CM為△DCE中DE邊上的高,連接BE.(Ⅰ)請求出∠AEB的度數(shù);(Ⅱ)判斷線段CM、AE、BE之間的數(shù)量關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某水庫大壩的橫截面是如圖所示的四邊形ABCD,其中AB∥CD.大壩頂上有一瞭望臺PC,PC正前方有兩艘漁船M,N.觀察員在瞭望臺頂端P處觀測到漁船M的俯角α為31°,漁船N的俯角β為45°.已知MN所在直線與PC所在直線垂直,垂足為E,且PE長為30米.
(1)求兩漁船M,N之間的距離(結(jié)果精確到1米).
(2)已知壩高24米,壩長100米,背水坡AD的坡度i=1∶0.25.為提高大壩防洪能力,請施工隊將大壩的背水坡通過填筑土石方進行加固,壩底BA加寬后變?yōu)?/span>BH,加固后背水坡DH的坡度i=1∶1.75.施工隊施工10天后,為盡快完成加固任務,施工隊增加了機械設備.工作效率提高到原來的2倍,結(jié)果比原計劃提前20天完成加固任務,施工隊原計劃平均每天填筑土石方多少立方米?
(參考數(shù)據(jù):tan 31°≈0.60,sin 31°≈0.52)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在長方形ABCD中,AB>BC,把長方形沿對角線AC所在直線折疊,使點B落在點E處,AE交CD于點F,連接DE
求證:(1)△AED≌△CDE
(2)△EFD是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,于點,.
(1)求證:;
(2)如圖2,點從點出發(fā),沿線段運動到點停止,連接、.則、、三個角之間具有怎樣的數(shù)量關系(不考慮點與點,,重合的情況)?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com