【題目】兩個大小不同的等腰直角三角尺如圖1所示放置,圖2是由它抽象出的幾何圖形,點,,在同一條直線上,連接.
(1)請找出圖2中與全等的三角形,并說明理由(說明:結論中不得含有未標識的字母);
(2)判斷線段與是否垂直,并說明理由.
【答案】(1)△ABE≌△ACD,理由見解析;(2)DC⊥BE,理由見解析.
【解析】
(1)根據(jù)角的和差關系可得∠BAE=∠CAD,利用SAS即可證明△ABE≌△ACD,即可得答案.
(2)根據(jù)等腰直角三角形的性質可得∠B=∠ACB=45°,由(1)可得△ABE≌△ACD,根據(jù)全等三角形的性質可得∠ACD=∠B=45°,即可求出∠BCD=90°,即可證明DC⊥BE,可得答案.
(1)△ABE≌△ACD,理由如下:
∵△ABC和△ADE是等腰直角三角形,
∴AB=AC,AD=AE,∠BAC=∠EAD=90°,
∴∠BAC+∠CAE=∠EAD+∠CAE,即∠BAE=∠CAD,
在△ABE和△ACD中,,
∴△ABE≌△ACD.
(2)DC⊥BE,理由如下:
∵△ABC是等腰直角三角形,
∴∠B=∠ACB=45°,
由(1)得:△ABE≌△ACD,
∴∠ACD=∠B=45°,
∴∠ACB+∠ACD=45°+45°=90°,
∴DC⊥BE.
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)的圖象與直線y=x+m交于x軸上一點A(-1,0),二次函數(shù)圖象的頂點為C(1,-4).
(1)求這個二次函數(shù)的解析式;
(2)若二次函數(shù)的圖象與x軸交于另一點B,與直線y=x+m交于另一點D,求 △ABD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,PA、PB切⊙O于A、B,點C在弧AB上,DE切⊙O于C,交PA、PB于D、E,已知PO=13cm,⊙O的半徑為5cm,則△PDE的周長是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】古埃及人用下面的方法得到直角三角形,把一根長繩打上等距離的13個結(12段),然后用樁釘釘成一個三角形,如圖1,其中∠C便是直角.
(1)請你選擇古埃及人得到直角三角形這種方法的理由 (填A或B)
A.勾股定理:在直角三角形邊的兩直角邊的平方和等于斜邊的平方
B.勾股定理逆定理:如果三角形的三邊長a、b、c有關系:a2+b2=c2,那么這個三角形是直角三角形
(2)如果三個正整數(shù)a、b、c滿足a2+b2=c2,那么我們就稱 a、b、c是一組勾股數(shù),請你寫出一組勾股數(shù)
(3)仿照上面的方法,再結合上面你寫出的勾股數(shù),你能否只用繩子,設計一種不同于上面的方法得到一個直角三角形(在圖2中,只需畫出示意圖.)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有一個晾衣架放置在水平地面上,在其示意圖中,支架OA、OB的長均為100cm,支架OA與水平晾衣架OC的夾角∠AOC為59°,則支架兩個著地點之間的距離AB為_____cm.
(參考數(shù)據(jù):sin59°≈0.86,cos59°≈0.52,tan59°≈1.66)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,D在邊AC上,且.
如圖1,填空______,______
如圖2,若M為線段AC上的點,過M作直線于H,分別交直線AB、BC與點N、E.
求證:是等腰三角形;
試寫出線段AN、CE、CD之間的數(shù)量關系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在如圖所示的直角坐標系中,每個小方格都是邊長為1的正方形,△ABC的頂點均在格點上,點A的坐標是(﹣3,﹣1).
(1)將△ABC沿y軸正方向平移3個單位得到△A1B1C1,畫出△A1B1C1,并寫出點B1的坐標;
(2)畫出△A1B1C1關于y軸對稱的△A2B2C2,并寫出點C2的坐標;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD內接于⊙O,∠ABC=60°,BD平分∠ADC.
(1)試說明△ABC是等邊三角形;
(2)若AD=2,DC=4,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】張大伯計劃建一個面積為72平方米的矩形養(yǎng)雞場,為了節(jié)約材料,雞場一邊靠著原有的一堵墻(墻長15米),另外的部分(包括中間的隔墻)用30米的竹籬笆圍成,如圖.
(1)請你通過計算幫助張大伯設計出圍養(yǎng)雞場的方案.
(2)在上述條件不變的情況下,能圍出比72平方米更大的養(yǎng)雞場嗎?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com