【題目】如圖,點(diǎn)P是四邊形ABCD外接圓上任意一點(diǎn),且不與四邊形頂點(diǎn)重合,若AD是⊙O的直徑,AB=BC=CD.連接PA,PB,PC,若PA=a,則點(diǎn)A到PB和PC的距離之和AE+AF= .
【答案】a
【解析】解:如圖,連接OB、OC.
∵AD是直徑,AB=BC=CD,
∴ = = ,
∴∠AOB=∠BOC=∠COD=60°,
∴∠APB= ∠AOB=30°,∠APC= ∠AOC=60°,
在Rt△APE中,∵∠AEP=90°,
∴AE=APsin30°= a,
在Rt△APF中,∵∠AFP=90°,
∴AF=APsin60°= a,
∴AE+AF= a.
所以答案是 a.
【考點(diǎn)精析】關(guān)于本題考查的勾股定理的概念和圓周角定理,需要了解直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角;一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,AB=AC,∠C=70°,△AB′C′與△ABC 關(guān)于直線 EF對(duì)稱,∠CAF=10°,連接 BB′,則∠ABB′的度數(shù)是( )
A. 30° B. 35° C. 40° D. 45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,I是△ABC的內(nèi)心,AI的延長線和△ABC的外接圓相交于點(diǎn)D,連接BI、BD、DC.下列說法中錯(cuò)誤的一項(xiàng)是( 。
A.線段DB繞點(diǎn)D順時(shí)針旋轉(zhuǎn)一定能與線段DC重合
B.線段DB繞點(diǎn)D順時(shí)針旋轉(zhuǎn)一定能與線段DI重合
C.∠CAD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)一定能與∠DAB重合
D.線段ID繞點(diǎn)I順時(shí)針旋轉(zhuǎn)一定能與線段IB重合
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(a,0)和B(0,b)滿足,分別過點(diǎn)A、B作x軸、y軸的垂線交于點(diǎn)C,如圖,點(diǎn)P從原點(diǎn)出發(fā),以每秒2個(gè)單位長度的速度沿著O-B-C-A-O的路線移動(dòng).
(1)寫出A、B、C三點(diǎn)的坐標(biāo);
(2)當(dāng)點(diǎn)P移動(dòng)了6秒時(shí),描出此時(shí)P點(diǎn)的位置,并寫出點(diǎn)P的位置坐標(biāo);
(3)連結(jié)(2)中B、P兩點(diǎn),將線段BP向下平移h個(gè)單位(h>0),得到B′P′,若B′P′將四邊形OACB的周長分成相等的兩部分,求h的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是⊙O的弦,過點(diǎn)C的切線交AB的延長線于點(diǎn)D,若∠A=∠D,CD=3,則圖中陰影部分的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,在平面直角坐標(biāo)系中,A(﹣3,﹣4),B(0,﹣2).
(1)△OAB繞O點(diǎn)旋轉(zhuǎn)180°得到△OA1B1,請(qǐng)畫出△OA1B1,并寫出A1,B1的坐標(biāo);
(2)判斷以A,B,A1,B1為頂點(diǎn)的四邊形的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線L:y=-x+2與x軸、y軸分別交于A、B兩點(diǎn),在y軸上有一點(diǎn)C(0,4),動(dòng)點(diǎn)M從A點(diǎn)以每秒1個(gè)單位的速度沿x軸向左移動(dòng).
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)求△COM的面積S與M的移動(dòng)時(shí)間t之間的函數(shù)關(guān)系式;
(3)當(dāng)t為何值時(shí)△COM≌△AOB,并求此時(shí)M點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,BF切⊙O于點(diǎn)B,AF交⊙O于點(diǎn)D,點(diǎn)C在DF上,BC交⊙O于點(diǎn)E,且∠BAF=2∠CBF,CG⊥BF于點(diǎn)G,連接AE.
(1)直接寫出AE與BC的位置關(guān)系;
(2)求證:△BCG∽△ACE;
(3)若∠F=60°,GF=1,求⊙O的半徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將兩張半徑均為10的半圓形的紙片完全重合疊放一起,上面這張紙片繞著直徑的一端B順時(shí)針旋轉(zhuǎn)30°后得到如圖所示的圖形, 與直徑AB交于點(diǎn)C,連接點(diǎn)C與圓心O′.
(1)求 的長;
(2)求圖中下面這張半圓形紙片未被上面這張紙片重疊部分的面積S白 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com