【題目】如圖1是小區(qū)常見的漫步機,從側(cè)面看如圖2,踏板靜止時,踏板連桿與立柱上的線段重合,長為0.2米,當(dāng)踏板連桿繞著點旋轉(zhuǎn)到處時,測得,此時點距離地面的高度0.44米.求:

1)踏板連桿的長.

2)此時點到立柱的距離.(參考數(shù)據(jù):,

【答案】11.2 20.72

【解析】

1)過點CCGABG,得到四邊形CFEG是矩形,根據(jù)矩形的性質(zhì)得到EGCF0.44,故BG=0.24設(shè)AGx,求得ABx+0.24,ACABx+0.24,根據(jù)余弦的定義列方程即可求出x,即可求出AB的長;

2)利用正弦即可求出CG的長.

1)過點CCGABG

則四邊形CFEG是矩形,

EGCF0.44

BG=0.24

設(shè)AGx,

ABx+0.24,ACABx+0.24,

RtACG中,∠AGC90°,∠CAG37°,

cosCAG0.8,

解得:x0.96

經(jīng)檢驗,x=0.96符合題意,

ABx+0.24=1.2(米),

2)點到立柱的距離為CG

CG=ACsin37°=1.2×0.6=0.72(米)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】交通工程學(xué)理論把在單向道路上行駛的汽車看成連續(xù)的流體,并用流量、速度、密度三個概念描述車流的基本特征,其中流量(輛小時)指單位時間內(nèi)通過道路指定斷面的車輛數(shù);速度(千米小時)指通過道路指定斷面的車輛速度,密度(輛千米)指通過道路指定斷面單位長度內(nèi)的車輛數(shù).為配合大數(shù)據(jù)治堵行動,測得某路段流量與速度之間關(guān)系的部分?jǐn)?shù)據(jù)如下表:

速度v(千米/小時)

流量q(輛/小時)

1)根據(jù)上表信息,下列三個函數(shù)關(guān)系式中,刻畫關(guān)系最準(zhǔn)確是_____________________.(只填上正確答案的序號)

;②;③

2)請利用(1)中選取的函數(shù)關(guān)系式分析,當(dāng)該路段的車流速度為多少時,流量達到最大?最大流量是多少?

3)已知,滿足,請結(jié)合(1)中選取的函數(shù)關(guān)系式繼續(xù)解決下列問題:市交通運行監(jiān)控平臺顯示,當(dāng)時道路出現(xiàn)輕度擁堵.試分析當(dāng)車流密度在什么范圍時,該路段將出現(xiàn)輕度擁堵?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為O的直徑,C是O上一點,過點C的直線交AB的延長線于點D,AEDC,垂足為E,F(xiàn)是AE與O的交點,AC平分BAE.

1求證:DE是O的切線;

2若AE=6,D=30°,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小穎和小紅兩位同學(xué)在學(xué)習(xí)概率時,做擲骰子(質(zhì)地均勻的正方體)實驗.

他們在一次實驗中共擲骰子次,試驗的結(jié)果如下:

朝上的點數(shù)

出現(xiàn)的次數(shù)

①填空:此次實驗中點朝上的頻率為________;

②小紅說:根據(jù)實驗,出現(xiàn)點朝上的概率最大.她的說法正確嗎?為什么?

小穎和小紅在實驗中如果各擲一枚骰子,那么枚骰子朝上的點數(shù)之和為多少時的概率最大?試用列表或畫樹狀圖的方法加以說明,并求出其最大概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AD平分∠BACBC于點D,OAB上一點,經(jīng)過點A,D⊙O分別交AB,AC于點E,F(xiàn),連接OFAD于點G.

(1)求證:BC⊙O的切線;

(2)設(shè)AB=x,AF=y,試用含x,y的代數(shù)式表示線段AD的長;

(3)BE=8,sinB=,求DG的長,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線軸交于,兩點,與軸交于點.

1)填空: , .

2)如圖1,已知,過點的直線與拋物線交于點、,且點、關(guān)于點對稱,求直線的解析式.

3)如圖2,已知,是第一象限內(nèi)拋物線上一點,作軸于點,若相似,請求出點的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與軸交于兩點,點為拋物線的頂點,為線段中點.

1)求的值;

2)求證:

3)以拋物線的頂點為圓心,為半徑作,點是圓上一動點,點的中點(如圖2);

①當(dāng)面積最大時,求的長度;

②若點的中點,求點運動的路徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司經(jīng)銷一種成本為10元的產(chǎn)品,經(jīng)市場調(diào)查發(fā)現(xiàn),在一段時間內(nèi),銷售量(件)與銷售單價 / )的關(guān)系如下表:

15

20

25

30

550

500

450

400

設(shè)這種產(chǎn)品在這段時間內(nèi)的銷售利潤為(元),解答下列問題:

1)如的一次函數(shù),求的函數(shù)關(guān)系式;

2)求銷售利潤與銷售單價之間的函數(shù)關(guān)系式;

3)求當(dāng)為何值時,的值最大?最大是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=6,AD=12,點E在AD邊上,且AE=8,EFBE交CD于F.

(1)求證:ABE∽△DEF;

(2)求EF的長.

查看答案和解析>>

同步練習(xí)冊答案