【題目】湖南鐵路五縱五橫的干線網(wǎng)、以長(zhǎng)沙為中心的一環(huán)八射快速網(wǎng)將在2020年初步完成,屆時(shí)長(zhǎng)沙鐵路總里程將達(dá)到6800公里左右,數(shù)據(jù)6800用科學(xué)記數(shù)法表示為(  )

A. 0.68×104B. 6.8×103C. 68×102D. 680×101

【答案】B

【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1|a|10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).

解:68006.8×103,

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】湘潭盤龍大觀園開園啦!其中杜鵑園的門票售價(jià)為:成人票每張50元,兒童票每張30元.如果某日杜鵑園售出門票100張,門票收入共4000元.那么當(dāng)日售出成人票 張.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位線,點(diǎn)M是邊BC上一點(diǎn),BM=3,點(diǎn)N是線段MC上的一個(gè)動(dòng)點(diǎn),連接DN,ME,DN與ME相交于點(diǎn)O.若△OMN是直角三角形,則DO的長(zhǎng)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】餐桌邊的一蔬一飯,舌尖上的一飲一酌,實(shí)屬來之不易,舌尖上的浪費(fèi)讓人觸目驚心.據(jù)統(tǒng)計(jì),中國(guó)每年浪費(fèi)的食物總量折合糧食約500億千克,這個(gè)數(shù)據(jù)用科學(xué)記數(shù)法表示為(

A.5×109千克 B.50×109千克

C.5×1010千克 D.0.5×1011千克

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】幾何體的三視圖相互關(guān)聯(lián).已知直三棱柱的三視圖如圖,在△PMN中,∠MPN=90°,PN=4,sin∠PMN=

(1)求BC及FG的長(zhǎng);
(2)若主視圖與左視圖兩矩形相似,求AB的長(zhǎng);
(3)在(2)的情況下,求直三棱柱的表面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】邊長(zhǎng)都為整數(shù)的△ABC≌△DEF ,AB與DE是對(duì)應(yīng)邊,AB=2,BC=4,若△DEF的周長(zhǎng)為偶數(shù),則 DF的取值為( )
A.3
B.4
C.5
D.3或4或5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了增強(qiáng)學(xué)生體質(zhì),決定開設(shè)以下體育課外活動(dòng)項(xiàng)目:A.籃球 B.乒乓球C.羽毛球 D.足球,為了解學(xué)生最喜歡哪一種活動(dòng)項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計(jì)圖,

請(qǐng)回答下列問題:

1)這次被調(diào)查的學(xué)生共有多少人?

2)請(qǐng)你將條形統(tǒng)計(jì)圖(2)補(bǔ)充完整;

3)在平時(shí)的乒乓球項(xiàng)目訓(xùn)練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學(xué)中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學(xué)的概率(用樹狀圖或列表法解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線y=﹣x+2與反比例函數(shù)y=的圖象有唯一公共點(diǎn),若直線y=﹣x+b與反比例函數(shù)y=的圖象有2個(gè)公共點(diǎn),則b的取值范圍是( 。

A. b>2 B. ﹣2<b<2 C. b>2或b<﹣2 D. b<﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下面的證明。
已知:如圖,BE∥CD,∠A=∠1,
求證:∠C=∠E。

證明:∵BE∥CD (已知 )
∴∠2=∠C ( )
又 ∵∠A=∠1 (已知 )
∴ AC∥DE ( )
∴ ∠2=∠E( )
∴∠C=∠E ( )

查看答案和解析>>

同步練習(xí)冊(cè)答案