【題目】如圖,正方形ABCD中,以對角線BD為邊作菱形BDFE,使B,C,E三點在同一直線上,連接BF,交CD于點G.
(1)求證:CG=CE;
(2)若正方形邊長為4,求菱形BDFE的面積.
【答案】(1)證明見解析;(2)16.
【解析】
(1)連接DE,則DE⊥BF,可得∠CDE=∠CBG,根據(jù)BC=DC,∠BCG=∠DCE,可證△BCG≌△DCE,可證CG=CE;
(2)已知正方形的邊長可以證明BD,即BE,根據(jù)BE,DC即可求菱形BDFE的面積.
解(1)證明:連接DE,則DE⊥BF,
∵∠CBG+∠BED=90°,∠CBG+∠CGB=90°,∠CGB=∠BED
又∵BC=DC,∠BCG=∠DCE,
∴△BCG≌△DCE(AAS),
∴CG=CE,
(2)正方形邊長BC=4,則BD=BE=,DC=4,菱形BDFE的面積為S=4×4=16.
答:菱形BDFE的面積為16.
科目:初中數(shù)學 來源: 題型:
【題目】英國曼徹斯特大學的兩位科學家因為成功地從石墨中分離出石墨烯,榮獲了諾貝爾物理學獎.石墨烯目前是世上最薄卻也是最堅硬的納米材料,同時還是導電性最好的材料,其理論厚度僅0.000 000 000 34米,將這個數(shù)用科學記數(shù)法表示為
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,△ABC和△ECD都是等腰直角三角形,CA=CB,CE=CD,△ABC的頂點A在△ECD的斜邊DE上.
(1)求證AE2+AD2=2AC2 ;
(2)如圖2,過點C作CO垂直AB于0點并延長交DE于點F,請確定線段AE、AF、DF間的數(shù)量關系,并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD中,E,F(xiàn)分別為AD,BC邊上的一點,增加下列條件,不能得出BE∥DF的是( 。
A. AE=CF B. BE=DF C. ∠EBF=∠FDE D. ∠BED=∠BFD
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AM∥BN,∠A=60°,點P是射線M上一動點(與點A不重合),BC,BD分別平分∠ABP和∠PBN,分別交射線AM于點C,D.
(1)∠CBD=
(2)當點P運動到某處時,∠ACB=∠ABD,則此時∠ABC=
(3)在點P運動的過程中,∠APB與∠ADB的比值是否隨之變化?若不變,請求出這個比值:若變化,請找出變化規(guī)律.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了創(chuàng)建全國衛(wèi)生城市,某社區(qū)要清理一個衛(wèi)生死角內(nèi)的垃圾,租用甲、乙兩車運送,兩車各運12趟可完成,需支付運費4800元.已知甲、乙兩車單獨運完此堆垃圾,乙車所運趟數(shù)是甲車的2倍,且乙車每趟運費比甲車少200元.
(1)求甲、乙兩車單獨運完此堆垃圾各需運多少趟?
(2)若單獨租用一臺車,租用哪臺車合算?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,D在邊AC上,且.
如圖1,填空______,______
如圖2,若M為線段AC上的點,過M作直線于H,分別交直線AB、BC與點N、E.
求證:是等腰三角形;
試寫出線段AN、CE、CD之間的數(shù)量關系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】從﹣3,﹣2,﹣1,0,1,2,3這七個數(shù)中隨機抽取一個數(shù)記為a,則a的值是不等式組 的解,但不是方程x2﹣3x+2=0的實數(shù)解的概率為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列關系中,兩個量之間為反比例函數(shù)關系的是( )
A.正方形的面積S與邊長a的關系
B.正方形的周長L與邊長a的關系
C.長方形的長為a,寬為20,其面積S與a的關系
D.長方形的面積為40,長為a,寬為b,a與b的關系
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com