【題目】甲、乙兩車(chē)從地出發(fā),勻速駛向地.甲車(chē)以的速度行駛后,乙車(chē)才沿相同路線行駛.乙車(chē)先到達(dá)地并停留后,再以原速按原路返回,直至與甲車(chē)相遇.在此過(guò)程中,兩車(chē)之間的距離與乙車(chē)行駛時(shí)間之間的函數(shù)關(guān)系如圖所示.下列說(shuō)法:①乙車(chē)的速度是;②;③點(diǎn)的坐標(biāo)是;④.其中說(shuō)法正確的是_________.
【答案】①③④.
【解析】
根據(jù)題意,兩車(chē)距離為函數(shù),由圖象可知兩車(chē)起始距離為80,從而得到乙車(chē)速度,根據(jù)圖象變化規(guī)律和兩車(chē)運(yùn)動(dòng)狀態(tài),得到相關(guān)未知量.
解:由圖象可知,乙出發(fā)時(shí),甲乙相距80km,2小時(shí)后,乙車(chē)追上甲.則說(shuō)明乙每小時(shí)比甲快40km,則乙的速度為120km/h.①正確;
乙返回時(shí),甲乙相距80km,到兩車(chē)相遇用時(shí)80÷(120+80)=0.4小時(shí),則n=6+1+0.4=7.4,②錯(cuò)誤.
當(dāng)乙在B休息1h時(shí),甲前進(jìn)80km,則H點(diǎn)坐標(biāo)為(7,80),③正確;
由圖象第2-6小時(shí),乙由相遇點(diǎn)到達(dá)B,用時(shí)4小時(shí),每小時(shí)比甲快40km,則此時(shí)甲乙距離4×40=160km,則m=160,④正確;
故答案為①③④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用“”規(guī)定一種新運(yùn)算:對(duì)于任意有理數(shù)a和b,規(guī)定ab=ab2+2ab+a.如:13=1×32+2×1×3+1=16
(1)求2(-1)的值;
(2)若(a+1)3=32,求a的值;
(3)若m=2x,n=(x)3(其中x為有理數(shù)),試比較m、n的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:對(duì)于給定的兩個(gè)函數(shù),任取自變量x的一個(gè)值,當(dāng)x<0時(shí),它們對(duì)應(yīng)的函數(shù)值互為相反數(shù);當(dāng)x≥0時(shí),它們對(duì)應(yīng)的函數(shù)值相等,我們稱(chēng)這樣的兩個(gè)函數(shù)互為相關(guān)函數(shù).例如:一次函數(shù)y=x﹣1,它們的相關(guān)函數(shù)為y=.
(1)已知點(diǎn)A(﹣5,8)在一次函數(shù)y=ax﹣3的相關(guān)函數(shù)的圖象上,求a的值;
(2)已知二次函數(shù)y=﹣x2+4x﹣.
①當(dāng)點(diǎn)B(m, )在這個(gè)函數(shù)的相關(guān)函數(shù)的圖象上時(shí),求m的值;
②當(dāng)﹣3≤x≤3時(shí),求函數(shù)y=﹣x2+4x﹣的相關(guān)函數(shù)的最大值和最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某儲(chǔ)運(yùn)站現(xiàn)有甲種貨物1530噸,乙種貨物1150噸,安排用一列貨車(chē)將這批貨物運(yùn)往青島,這列貨車(chē)可掛A,B兩種不同規(guī)格的貨廂50節(jié).已知甲種貨物35噸和乙種貨物15噸可裝滿一節(jié)A型貨廂,甲種貨物25噸和乙種貨物35噸可裝滿一節(jié)B型貨廂,按此要求安排A,B兩種貨廂的節(jié)數(shù),有哪幾種運(yùn)輸方案?請(qǐng)?jiān)O(shè)計(jì)出來(lái).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=AC,BC=12,E為邊AC的中點(diǎn),
(1)如圖1,過(guò)點(diǎn)E作EH⊥BC,垂足為點(diǎn)H,求線段CH的長(zhǎng);
(2)作線段BE的垂直平分線分別交邊BC、BE、AB于點(diǎn)D、O、F.
①如圖2,當(dāng)∠BAC=90°時(shí),求BD的長(zhǎng);
②如圖3,設(shè)tan∠ACB=x,BD=y,求y與x之間的函數(shù)表達(dá)式和tan∠ACB的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的圖象與軸有兩個(gè)公共點(diǎn).
(1)求的取值范圍,寫(xiě)出當(dāng)取其范圍內(nèi)最大整數(shù)時(shí)拋物線的解析式;
(2)將(1)中所求得的拋物線記為,
①求的頂點(diǎn)的坐標(biāo);
②若當(dāng)時(shí), 的取值范圍是,求的值;
(3)將平移得到拋物線,使的頂點(diǎn)落在以原點(diǎn)為圓心半徑為的圓上,求點(diǎn)與兩點(diǎn)間的距離最大時(shí)的解析式,怎樣平移可以得到所求拋物線?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b的圖象經(jīng)過(guò)點(diǎn)A(﹣2,6),且與x軸相交于點(diǎn)B,與正比例函數(shù)y=3x的圖象相交于點(diǎn)C,點(diǎn)C的橫坐標(biāo)為1.
(1)求k、b的值;
(2)若點(diǎn)D在y軸負(fù)半軸上,且滿足S△COD=S△BOC,求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察下列兩個(gè)等式:,,給出定義如下:我們稱(chēng)使等式 成立的一對(duì)有理數(shù),為“共生有理數(shù)對(duì)”,記為(,),如:數(shù)對(duì)(,),(,),都是“共生有理數(shù)對(duì)”.
(1)數(shù)對(duì)(,),(,)中是“共生有理數(shù)對(duì)”嗎?說(shuō)明理由.
(2)若(,)是“共生有理數(shù)對(duì)”,則(,)是“共生有理數(shù)對(duì)”嗎?說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)生的學(xué)業(yè)負(fù)擔(dān)過(guò)重會(huì)嚴(yán)重影響學(xué)生對(duì)待學(xué)習(xí)的態(tài)度.為此我市教育部門(mén)對(duì)部分學(xué)校的八年級(jí)學(xué)生對(duì)待學(xué)習(xí)的態(tài)度進(jìn)行了一次抽樣調(diào)查(把學(xué)習(xí)態(tài)度分為三個(gè)層級(jí),A級(jí):對(duì)學(xué)習(xí)很感興趣;B級(jí):對(duì)學(xué)習(xí)較感興趣;C級(jí):對(duì)學(xué)習(xí)不感興趣),并將調(diào)查結(jié)果繪制成圖①和圖②的統(tǒng)計(jì)圖(不完整).請(qǐng)根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)此次抽樣調(diào)查中,共調(diào)查了 名學(xué)生;
(2)將圖①補(bǔ)充完整;
(3)求出圖②中C級(jí)所占的圓心角的度數(shù);
(4)根據(jù)抽樣調(diào)查結(jié)果,請(qǐng)你估計(jì)我市近8000名八年級(jí)學(xué)生中大約有多少名學(xué)生學(xué)習(xí)態(tài)度達(dá)標(biāo)(達(dá)標(biāo)包括A級(jí)和B級(jí))?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com