【題目】如圖1,在平面直角坐標(biāo)系中,A(5, 0), B(0, 5), C(2, 0),連AB
(1)如圖2,D為第一象限內(nèi)一點(diǎn),CDBC于點(diǎn)C,ADAB于點(diǎn)A,求點(diǎn)D坐標(biāo);
(2)E為軸負(fù)半軸上一動(dòng)點(diǎn),連BE,在軸下方做EFBE于點(diǎn)E,并且EF=BE,連FC,直接寫出當(dāng)CF最短時(shí)點(diǎn)E的坐標(biāo).
【答案】(1)D(7,2)(2)E(-3,0).
【解析】
(1)如圖2,先求出BC、AB直線的解析式,再根據(jù)垂直的關(guān)系得到直線CD與AD的解析式,聯(lián)立即可解方程;
(2)如圖1,根據(jù)題意可知當(dāng)CF⊥AE時(shí),CF最短,故可證明△OBE≌△CEF,即可求出E點(diǎn)坐標(biāo).
(1)∵A(5, 0), B(0, 5), C(2, 0),
求得直線AB的解析式為y=-x+5,
求得直線BC的解析式為y=+5
∵CDBC,ADAB
可設(shè)直線CD的解析式為y=x+b,代入C(2,0)得b=-
∴直線CD的解析式為y=x-
設(shè)直線AD的解析式為y=x+c,代入A(5,0)得c=-5
∴直線CD的解析式為y=x-5
聯(lián)立,解得
故D(7,2)
(2)根據(jù)題意可知當(dāng)CF⊥AE時(shí),CF最短,故可證明△OBE≌△CEF,即可求出E點(diǎn)坐標(biāo).
∵BE⊥EF,∴∠BEO+∠CEF=90°,
又∠BEO+∠EBO=90°,
∴∠CEF =∠OBE
∵BE=EF,
∴△OBE≌△CEF
∴EC=BO=5,
∴OE=5-2=3,
則E(-3,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如下圖,在平面直角坐標(biāo)系中,將△ABO繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到△AB1C1的位置,點(diǎn)B、O分別落在點(diǎn)B1、C1處,點(diǎn)B1在x軸上,再將△AB1C1繞點(diǎn)B1順時(shí)針旋轉(zhuǎn)到△A1B1C2的位置,點(diǎn)C2在x軸上,將△A1B1C2繞點(diǎn)C2順時(shí)針旋轉(zhuǎn)到△A2B2C2的位置,點(diǎn)A2在x軸上,依次進(jìn)行下去….若點(diǎn)A(,0),B(0,2),點(diǎn)B2019的坐標(biāo)為_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖平面直角坐標(biāo)系中,點(diǎn)O是坐標(biāo)原點(diǎn),矩形ABCO是頂點(diǎn)坐標(biāo)分別為A(3,0)、B(3,4)、C(0,4).點(diǎn)D在y軸上,且點(diǎn)D的坐標(biāo)為(0,﹣5),點(diǎn)P是直線AC上的一動(dòng)點(diǎn).
(1)當(dāng)點(diǎn)P運(yùn)動(dòng)到線段AC的中點(diǎn)時(shí),求直線DP的解析式(關(guān)系式);
(2)當(dāng)點(diǎn)P沿直線AC移動(dòng)時(shí),過點(diǎn)D、P的直線與x軸交于點(diǎn)M.問在x軸的正半軸上是否存在使△DOM與△ABC相似的點(diǎn)M?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)當(dāng)點(diǎn)P沿直線AC移動(dòng)時(shí),以點(diǎn)P為圓心、R(R>0)為半徑長(zhǎng)畫圓.得到的圓稱為動(dòng)圓P.若設(shè)動(dòng)圓P的半徑長(zhǎng)為,過點(diǎn)D作動(dòng)圓P的兩條切線與動(dòng)圓P分別相切于點(diǎn)E、F.請(qǐng)?zhí)角笤趧?dòng)圓P中是否存在面積最小的四邊形DEPF?若存在,請(qǐng)求出最小面積S的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD⊥BC于D,AD=BD,AC=BE.
(1)求證:∠BED=∠C;
(2)猜想并說明BE和AC有什么數(shù)量和位置關(guān)系。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是的角平分線OC上一點(diǎn),PNOB于點(diǎn)N,點(diǎn)M是線段ON上一點(diǎn),已知OM=3,ON=4,點(diǎn)D為OA上一點(diǎn),若滿足PD=PM,則OD的長(zhǎng)度為________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中∠C=55°,∠B=∠D=90°,E,F分別是BC,DC上的點(diǎn),當(dāng)△EAF周長(zhǎng)最小時(shí),∠EAF的度數(shù)為( )
A.55°B.70°C.125°D.110°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,的頂點(diǎn)坐標(biāo)分別為A(2,3)、B (1,1)、C(2,1)
(1)畫出關(guān)于軸對(duì)稱的,并寫出點(diǎn)的坐標(biāo)為_________
(2)將向左平移4個(gè)單位長(zhǎng)度得到,直接寫出點(diǎn)的坐標(biāo)為_________
(3)直接寫出點(diǎn)B關(guān)于直線n(直線n上各點(diǎn)的縱坐標(biāo)都為-1)對(duì)稱點(diǎn)B'的坐標(biāo)為________
(4)在軸上找一點(diǎn)P,使PA+PB的值最小,標(biāo)出P點(diǎn)的位置(保留畫圖痕跡)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,∠BAC=106°,EF、MN分別是AB、AC的垂直平分線,點(diǎn)E、N在BC上,則∠EAN=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠A=90°,AB=AC,點(diǎn)D,E分別在邊AB,AC上,AD=AE,連接DC,點(diǎn)M,P,N分別為DE,DC,BC的中點(diǎn).
(1)觀察猜想
圖1中,線段PM與PN的數(shù)量關(guān)系是 ,位置關(guān)系是 ;
(2)探究證明
把△ADE繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷△PMN的形狀,并說明理由;
(3)拓展延伸
把△ADE繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,請(qǐng)直接寫出△PMN面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com