【題目】在坐標平面內,△ABC的頂點位置如圖所示.
(1)將△ABC作平移交換(x,y)→(x+2,y-3)得到,畫出.
(2)以點O為位似中心縮小得到,使與的相似比為1:2,且點A與其對應點位于點O的兩側,畫出.
科目:初中數學 來源: 題型:
【題目】在某次商業(yè)足球比賽中,門票銷售單位對團體購買門票實行優(yōu)惠,決定在原定票價基礎上每張降價100元,這樣按原定票價需花費14 000元購買的門票張數,現在只花費了10 500元.
(1)求每張門票的原定票價;
(2)根據實際情況,組織單位決定對于個人購票也采取優(yōu)惠措施,原定票價經過連續(xù)二次降價后降為324元,求平均每次降價的百分率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2020賀歲片《囧媽》提檔大年三十網絡首播.“樂調查”平臺為了全面了解觀眾對《囧媽》的滿意度情況,進行隨機抽樣調查,分為四個類別:.非常滿意;.滿意;.基本滿意;.不滿意,依據調查數據繪制成圖1和圖2的統計圖(不完整).
根據以上信息,解答下列問題:
(1)本次接受調查的觀眾共有_______人;
(2)扇形統計圖中,扇形的圓心角度數是_______;
(3)請補全條形統計圖;
(4)“樂調查”平臺調查了春節(jié)期間觀看《固媽》的觀眾約5000人,請估計觀眾對該電影的滿意(、、類視為滿意)的人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】定義:在平面直角坐標系中,將點P繞點T(t,0)(t>0)旋轉180°得到點Q,則稱點Q為點P的“發(fā)展點”.
(1)當t=3時,點(0,0)的“發(fā)展點”坐標為 ,點(﹣1,﹣1)的“發(fā)展點”坐標為 .
(2)若t>2,則點(2,3)的“發(fā)展點”的橫坐標為 (用含t的代數式表示 ).
(3)若點P在直線y=2x+6上,其“發(fā)展點”Q在直線y=2x﹣8上,求點T的坐標.
(4)點P(2,2)在拋物線y=﹣x2+k上,點M在這條拋物線上,點Q為點P的“發(fā)展點”,若△PMQ是以點M為直角頂點的等腰直角三角形,求t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀理解:給定一個矩形,如果存在另一個矩形,它的周長和面積分別是已知矩形的周長和面積的一半,則這個矩形是給定矩形的“減半”矩形.如圖,矩形是矩形的“減半”矩形.
請你解決下列問題:
(1)當矩形的長和寬分別為,時,它是否存在“減半”矩形?請作出判斷,并說明理由.
(2)邊長為的正方形存在“減半”正方形嗎?如果存在,求出“減半”正方形的邊長;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,銳角△ABC中,D、E分別是AB、BC的中點,F是AC上的點,且∠AFE=∠A,DM//EF交AC于點M.
(1)求證:DM=DA;
(2)點G在BE上,且∠BDG=∠C,如圖2,
① 求證:△DEG∽△ECF;
② 從線段CE上取一點H,連接FH使∠CFH=∠B,若BG=1,求EH的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知如圖,△ABC中AB=AC,AE是角平分線,BM平分∠ABC交AE于點M,經過B、M兩點的⊙O交BC于G,交AB于點F,FB恰為⊙O的直徑.
(1)求證:AE與⊙O相切;
(2)當BC=6,cosC=,求⊙O的直徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】學校今年組織學生參加志愿者活動,活動分為甲、乙、丙三組進行.下面的條形統計圖和扇形統計圖反映了學生參加活動的報名情況,請你根據圖中的信息,解答下列問題:
(1)若在參加活動的學生中隨機抽取一名學生,則抽到乙組學生的概率是
(2)今年參加志愿者共 人,并把條形統計圖補充完整;
(3)學校兩年前參加志愿者的總人數是810人,若這兩年的年增長率相同,求這個年增長率.(精確到1%)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知二次函數的圖象交軸于,兩點,交軸于點,其中.
(1)求點的坐標,并用含的式子表示;
(2)連接,,當為銳角時,求的取值范圍;
(3)若為軸上一個動點,連接,當點的坐標為時,直接寫出的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com