【題目】如圖,∠ADE+BCF=180°,BE平分∠ABC,∠ABC=2E.

1ADBC平行嗎?請說明理由;

2ABEF的位置關系如何?為什么?

3)若AF平分∠BAD,試說明:

①∠BAD=2F;②∠E+F=90°.

注:本題第(1)、(2)小題在下面的解答過程的空格內(nèi)填寫理由或數(shù)學式;第(3)小題要寫出解題過程.

解:(1ADBC,理由如下:

∵∠ADE+ADF=180°,(平角的定義)

ADE+BCF=180°,(已知)

∴∠ADF=______, ____________________________

ADBC ____________________________

2ABEF的位置關系是:_______________.

BE平分∠ABC, (已知)

∴∠ABE=ABC. (角平分線的定義)

又∵∠ABC=2E, (已知),

即∠E=ABC,

∴∠E=_____. _____________________________

___________. _____________________________

【答案】(1)詳見解析;(2)詳見解析;(3)①詳見解析.②詳見解析.

【解析】

1)根據(jù)平行線的判定,以及證明題的書寫規(guī)則解題即可

2)根據(jù)平行線的判定以及書寫規(guī)則解題即可

3)①結合(1)中結論以及角平分線可證得∠BAD=2F.;

②根據(jù)(1)中結論,利用平行線的性質(zhì),以及角的等量代換即可求解

解:(1ADBC,理由如下:

∵∠ADE+ADF=180°,(平角的定義)

ADE+BCF=180°,(已知)

∴∠ADF= BCF ,(同角的補角相等_______

ADBC;同位角相等,兩直線平行 );

2ABEF的位置關系是: ABEF _.

BE平分∠ABC(已知)

∴∠ABE=ABC(角平分線的定義)

又∵∠ABC=2E, (已知) ,

即∠E=ABC,

∴∠E=_ABE ._等量代換_

__AB _EF 內(nèi)錯角相等,兩直線平行 );

3)①由( 1)知ABEF

∴∠BAF=F.

AF平分∠BAD,

∴∠BAD=2BAF

∴∠BAD=2F.

②由( 1)知ADBC,

∴∠BAD+ABC=180°,

∵∠BAD=2F,∠ABC=2E,

∴∠E+F=90°.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為測山高,在點A處測得山頂D的仰角為30°,從點A向山的方向前進140米到達點B,在B處測得山頂D的仰角為60°(如圖).

1)在所給的圖中尺規(guī)作圖:過點DDC⊥AB,交AB的延長線于點C(保留作圖痕跡);

2)山高DC是多少(結果保留根號形式)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點的坐標為(0,4),線段的位置如圖所示,其中點的坐標為(,),點的坐標為(3,).

(1)將線段平移得到線段,其中點的對應點為,點的對應點為點.

①點平移到點的過程可以是:先向 平移 個單位長度,再向 平移 個單位長度;

②點的坐標為 .

(2)(1)的條件下,若點的坐標為(4,0),連接,畫出圖形并求的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,將矩形紙片ABCD折疊,使點D與點B重合,點C落在點C′處,折痕為EF,若∠ABE=20°,那么∠EFC′的度數(shù)為(  )

A. 115° B. 120° C. 125° D. 130°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線EF,CD相交于點0,OA⊥OB,且OC平分∠AOF,

(1)若∠AOE=40°,求∠BOD的度數(shù);

(2)若∠AOE=α,求∠BOD的度數(shù);(用含α的代數(shù)式表示)

(3)從(1)(2)的結果中能看出∠AOE和∠BOD有何關系?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,E,F分別是ADBC的中點,連結AF,BE,CE,DF分別交于點M,N,則四邊形EMFN(  )

A. 梯形B. 菱形

C. 矩形D. 無法確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將四張邊長各不相同的正方形紙片按如圖方式放入矩形ABCD內(nèi)(相鄰紙片之間互不重疊也無縫隙),未被四張正方形紙片覆蓋的部分用陰影表示,設右上角與左下角陰影部分的周長的差為l.若知道l的值,則不需要測量就能知道周長的正方形的標號為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,點DE分別是邊BC,AC上的中點,連接DE,并延長DE至點F,使EF=ED,連接AD,AF,BF,CF,線段ADBF相交于點O,過點DDGBF,垂足為點G.

(1)求證:四邊形ABDF是平行四邊形;

(2)時,試判斷四邊形ADCF的形狀,并說明理由;

(3)若∠CBF=2ABF,求證:AF=2OG

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】目前我市校園手機現(xiàn)象越來越受到社會關注,針對這種現(xiàn)象,我市某中學九年級數(shù)學興趣小組的同學隨機調(diào)查了學校若干名家長對中學生帶手機現(xiàn)象的看法,統(tǒng)計整理并制作了如下的統(tǒng)計圖:

1)這次調(diào)查的家長總數(shù)為________人.家長表示不贊同的人數(shù)為________;

2請在圖①中把條形統(tǒng)計圖補充完整;

3)從這次接受調(diào)查的家長中隨機抽查一個,恰好是贊同的家長的概率是________;

4)求圖②中表示家長無所謂的扇形圓心角的度數(shù)

查看答案和解析>>

同步練習冊答案